Czy matematyka jest składnią języka? Kurta Gödla argument przeciwko formalizmowi

Słowa kluczowe: Kurt Gödel, formalism, syntactic interpretation of mathematics, Rudolf Carnap, platonism

Abstrakt

In this paper, I critically examine Kurt Gödel’s argument against the syntactic interpretation of mathematics. While the main aim is to analyze the argument, I also wish to underscore the relevance of the original elements of Gödel’s philosophical thought. The paper consists of four parts. In the first part, I introduce the reader to Gödel’s philosophy. In the second part, I reconstruct the formalist stance in the philosophy of mathematics, which is the object of Gödel’s criticism. In the third part, I sketch his argument against the syntactic interpretation of mathematics. Finally, I discuss some controversies regarding the argument.

Bibliografia

Awodey S., Carus A. W. (2001), How Carnap Could Have Replied to Gödel [w:] Carnap Brought Home, S. Awodey, C. Klein (eds.), Chicago: Open Court, 179-200.
Cantor G. (1878), Ein Beitrag zur Mannigfaltigkeitslehre, „Journal für die Reine und Angewandte Mathematik” 84, 242-258. https://doi.org/10.1515/crelle-1878-18788413
Carnap R. (1935), Logische Syntax der Sprache, Berlin–Heidelberg: Springer. https://doi.org/10.1007/978-3-662-25375-5
Carnap R. (1950/1983), Empiricism, Semantics and Ontology [w:] Philosophy of Mathematics: Selected Readings, P. Benacerraf, H. Putnam (eds.), 2nd ed., Cambridge: Cambridge University Press, 233-248.
Cieśliński C. (2017), The Epistemic Lightness of Truth: Deflationism and Its Logic, Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108178600
Dean W. (2015), Arithmetical Reflection and the Provability of Soundness, „Philosophia Mathematica” 23(1), 31-64. https://doi.org/10.1093/philmat/nku026
Feferman S. (1991), Reflections on Incompleteness, „Journal of Symbolic Logic” 56, 1-49. https://doi.org/10.2307/2274902
Franzén T. (2004), Inexhaustibility: A Non-Exhaustive Treatment, Wellesley, MA: Association for Symbolic Logic – A K Peters.
Franzén T. (2005), Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse, Wellesley, MA: A K Peters.
Goldfarb W. (1995), Introductory note to *1953/9 [w:] K. Gödel, Collected Works, vol. 3, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press, 324-334. Gödel K. (1929/1986), On the Completeness of the Calculus of Logic [w:] K. Gödel, Collected Works, vol. 1, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press, 60-101.
Gödel K. (1931/1986), Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I, „Monatshefte für Mathematik und Physik” 38: 173-198, [w:] K. Gödel, Collected Works, vol. 1, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press, 144-195. https://doi.org/10.1007/BF01700692
Gödel K. (1933/1995), The Present Situation in the Foundations of Mathematics [w:] K. Gödel, Collected Works, vol. 3, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press, 45-53.
Gödel K. (1939/1990), Consistency Proof for the Generalized Continuum Hypothesis, „Proceedings of the National Academy of Sciences” 25, 220-224 [w:] K. Gödel, Collected Works, vol. 2, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press, 28-32. https://doi.org/10.1073/pnas.25.4.220
Gödel K. (1946/1990), Remarks before the Princeton Bicentennial Conference on Problems in Mathematics [w:] K. Gödel, Collected Works, vol. 2, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press, 150-153.
Gödel K. (1947/1986), What is Cantor’s Continuum Problem?, „American Mathemathical Monthly” 54, 515-525 [w:] K. Gödel, Collected Works, vol. 1, S. Feferman et al., New York–Oxford: Oxford University Press, 176-187. https://doi.org/10.1080/00029890.1947.11991877
Gödel K. (1951/1995), Some Basic Theorems on the Foundations of Mathematics and Their Implications [w:] K. Gödel, Collected Works, vol. 3, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press, 304-323.
Gödel K. (1951/2018), O pewnych zasadniczych twierdzeniach dotyczących podstaw matematyki i wnioskach z nich płynących, tłum. M. Poręba, „Studia Semiotyczne” 32(2), 9-32.
Gödel K. (1953/1995), Is Mathematics Syntax of Language? [w:] K. Gödel, Collected Works, vol. 3, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press, 334-362.
Gödel K. (1964/1995), What is Cantor’s Continuum Problem? [w:] K. Gödel, Collected Works, vol. 2, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press, 254-270.
Gödel K. (1986), Collected Works, vol. 1, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press.
Gödel K. (1990), Collected Works, vol. 2, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press.
Gödel K. (1995), Collected Works, vol. 2, S. Feferman et al. (eds.), New York–Oxford: Oxford University Press.
Halbach V. (2011), Aksjomatyczne teorie prawdy, tłum. C. Cieśliński, J. Golińska-Pilarek, Warszawa: Wydawnictwo Naukowe PWN.
Hardy G. H. (1929), Mathematical Proof, „Mind” 38, 1-25. https://doi.org/10.1093/mind/XXXVIII.149.1
Krajewski S. (2003), Twierdzenie Gödla i jego interpretacje filozoficzne. Od mechanicyzmu do postmodernizmu, Warszawa: Wydawnictwo IFiS PAN.
Nicola C., Piazza M. (2019), The Implicit Commitment of Arithmetical Theories and Its Semantic Core, „Erkenntnis” 84, 913-937. https://doi.org/10.1007/s10670-018-9987-6
Poręba M. (2021), Gödel, Wittgenstein and the Sensibility of Platonism, „Eidos” 5(1), 108-125. https://doi.org/10.14394/eidos.jpc.2021.0007
Quine W. V. O. (1953), On What There Is, „The Review of Metaphysics” 2(5), 21-38.
Schlipp P. A. (ed.) (1963), The Philosophy of Rudolf Carnap, Cambridge: Cambridge University Press.
Skowron B., Wójtowicz K. (2020), Realizm w filozofii matematyki: Gödel i Ingarden, „Przegląd Filozoficzny – Nowa Seria” 29(4) [116], 223-248. https://doi.org/10.24425/pfns.2020.135072
Smith P. (2013), An Introduction to Gödel’s Theorems, Cambridge: Cambridge University Press.
Tarski A. (1933), Pojęcie prawdy w językach nauk dedukcyjnych, Warszawa: Prace Towarzystwa Naukowego Warszawskiego.
Wang H. (1996), A Logical Journey: From Gödel to Philosophy, Cambridge, Mass.: MIT Press. https://doi.org/10.7551/mitpress/4321.003.0001
Wójtowicz K. (2002), Platonizm matematyczny. Studium filozofii matematyki Kurta Gödla, Tarnów: OBI.
Wójtowicz K. (2018), Kategoria wyjaśniania a filozofia matematyki Gödla, „Studia Semiotyczne” 32(2), 107-130. https://doi.org/10.26333/sts.xxxii2.07
Opublikowane
2021-11-20
Jak cytować
Głowacki, M. (2021). Czy matematyka jest składnią języka? Kurta Gödla argument przeciwko formalizmowi. Filozofia Nauki, 29(1), 43-61. https://doi.org/10.14394/filnau.2021.0005