Granica i centrum. Problem struktury pojęć w modelu przestrzeni pojęciowych

Słowa kluczowe: conceptual spaces, similarity, membership, typicality, vagueness


One of the main aims of Peter Gärdenfors’ theory of conceptual spaces is to provide, by means of the geometric methods of representation, a formal model for the prototype structure of concepts. However, his model is not free of theoretical problems regarding an adequate description of the psychologically correct structure of concepts. Therefore, the main purpose of this paper is to raise several questions concerning the relationship between the typicality function and the membership function, as well as to propose some solutions to these problems by offering a model that binds both functions formally. Thus, the proposed model is intended to complement Gärdenfors’ conceptual spaces theory, in which the proper shape of both functions has not been sufficiently problematized. The second aim of the paper is to propose a new approach to vagueness, which is coherent with the formal requirements of the conceptual spaces framework, and at the same time is in line with the solution proposed in the first part of the text.


Barsalou L. W. (1991), Deriving Categories to Achieve Goals, „Psychology of Learning and Motivation” 27, 1-64.
Berlin B., Kay P. (1969), Basic Color Terms, Berkeley: University of California Press.
Breysse O., De Glas M. A. (2007), New Approach to the Concepts of Boundary and Contact. Toward an Alternative to Mereotopology, „Fundamenta Informaticae” 78(2), 217-238.
Cantlon J. F., Platt M. L., Brannon E. M. (2009), Beyond the Number Domain, „Trends in Cognitive Sciences” 13(2), 83-91.
Douven I., Decock L., Dietz R., Égré P. (2013), Vagueness. A Conceptual Spaces Approach, „Journal of Philosophical Logic” 42(1), 137-160.
Gallistel C. R., Gelman R. (2000), Non-verbal Numerical Cognition. From Reals to Integers, „Trends in Cognitive Sciences” 4(2), 59-65.
Gärdenfors P. (2000), Conceptual Spaces. On the Geometry of Thought, Cambridge: MIT Press.
Gärdenfors P. (2014), Geometry of Meaning. Semantics Based on Conceptual Spaces, Cambridge: MIT Press.
Gärdenfors P., Williams M. A. (2001), Reasoning about Categories in Conceptual Spaces [w:] Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI’01, vol. 1, B. Nebel (ed.), San Francisco: Morgan Kaufmann, 385-392.
Geeraerts D. (1985), Paradigm and Paradox. Explorations into a Paradigmatic Theory of Meaning and its Epistemological Background, Leuven: Leuven University Press.
Geeraerts D. (1989), Introduction. Prospects and Problems of Prototype Theory, „Linguistics” 27, 587-612.
Gemel A. (2016), Problem geometrycznej reprezentacji podobieństwa w koncepcji przestrzeni pojęciowych Petera Gärdenforsa, „Filozofia Nauki” 24(3) [95], 25-41.
Gemel A., Quinon P. (2019), Magnitude and Number Sensitivity of the Approximate Number System in Conceptual Spaces [w:] Conceptual Spaces. Elaborations and Applications, M. Kaipainen, F. Zenker, A. Hautamäki, P. Gärdenfors (eds.), Cham: Springer, 183-203.
Jäger G. (2010), Natural Color Categories Are Convex Sets [w:] Logic, Language, and Meaning, M. Aloni, H. Bastiaanse, T. de Jager, K. Schulz (eds.), Berlin: Springer, 11-20.
Keefe R., Smith P. (1997), Introduction. Theories of Vagueness [w:] Vagueness. A Reader, R. Keefe, P. Smith (eds.), Cambridge: MIT Press, 1-57.
Kleiber G. (2003), Semantyka prototypu, kategorie i znaczenie leksykalne, tłum. B. Ligara, Kraków: Universitas.
Kubiński T. (1958), Nazwy nieostre, „Studia Logica” VII, 115-179.
Lakoff G. (2011), Kobiety, ogień i rzeczy niebezpieczne. Co kategorie mówią nam o umyśle, tłum. M. Buchta, A. Kotarba, A. Skucińska, Kraków: Universitas.
Lee I., Portier B. (2007), An Empirical Study of Knowledge Representation and Learning within Conceptual Spaces for Intelligent Agents [w:] 6th IEEE/ACIS International Conference on Computer and Information Science, R. Lee, M. U. Chowdhury, S. Ray, T. Lee (eds.), Los Alamitos: IEEE Computer Society, 463-468.
McGee V., McLaughlin B. (1994), Distinctions without a Difference, „Southern Journal of Philosophy” 33(S1), 203-251.
Minda J. P., Smith J. D. (2002), Comparing Prototype-Based and Exemplar-Based Accounts of Category Learning and Attentional Allocation, „Journal of Experimental Psychology. Learning, Memory, and Cognition” 28(2), 275-292. 28.2.275
Okabe A., Boots B., Sugihara K. (1992), Spatial Tessellations. Concepts and Applications of Voronoi Diagrams, New York: John Wiley & Sons.
Osherson D. N., Smith E. E. (1981), On the Adequacy of Prototype Theory as a Theory of Concepts, „Cognition” 9(1), 35-58.
Rosch E. (1975), Cognitive Representation of Semantic Categories, „Journal of Experimental Psychology” 104(3), 192-233.
Rosch E., (1978), Principles of Categorization [w:] Cognition and Categorization, E. Rosch, B. B. Lloyd (eds.), Oxford: Lawrence Erlbaum, 27-48.
Ross B. H., Makin V. S. (1999), Prototype versus Exemplar Models in Cognition [w:] The Nature of Cognition, R. J. Sternberg (eds.), Cambridge: MIT Press, 205-241.
Sainsbury M. (1991), Is There Higher-Order Vagueness?, „Philosophical Quarterly” 41(163), 167-182.
Shapiro S. (2006), Vagueness in Context, Oxford: Oxford University Press.
Sorensen R. (2018), Vagueness [in:] The Stanford Encyclopedia of Philosophy (Summer 2018 Edition), E. N. Zalta (ed.).
Storms G., De Boeck P., Ruts W. (2000), Prototype and Exemplar-Based Information in Natural Language Categories, „Journal of Memory and Language” 42(1), 51-73.
Tversky A. (1977), Features of Similarity, „Psychological Reviews” 84(4), 327-352.
Verheyen S., Égré P. (2018), Typicality and Graded Membership in Dimensional Adjectives, „Cognitive Science” 42(7), 2250-2286.
Zadeh L. (1978), Fuzzy Sets as a Basis for a Theory of Possibility, „Fuzzy Sets and Systems” 1, 3-28.
Jak cytować
Gemel, A. (2020). Granica i centrum. Problem struktury pojęć w modelu przestrzeni pojęciowych. Filozofia Nauki, 28(2), 25-46.