Yablo’s Paradoxes in Non-arithmetical Setting

  • Ahmad Karimi Department of Mathematics, Behbahan Khatam Alanbia University of Technology, Behbahan
Słowa kluczowe: non-self-referential paradox, Yablo’s paradox, weak systems


Proving a paradox from very weak assumptions helps us to reveal what the source of the paradox is. We introduce a weak non-arithmetical theory in a language of predicate logic and give proofs for various versions of Yablo’s paradox in this weak system. We prove Always, Sometimes, Almost ,Always, and Infinitely Often versions of Yablo’s paradox in the presented weak axiom system, which is much weaker than the arithmetical setting.


Barrio E. A. (2010), “Theories of Truth without Standard Models and Yablo’s Sequences,” Studia Logica 96(3), 375-391. https://doi.org/10.1007/s11225-010-9289-8
Barrio E. A., Da Ré B. (2018), “Truth without Standard Models: Some Conceptual Problems Reloaded,” Journal of Applied Non-classical Logics 28(1), 122-139. https://doi.org/10.1080/11663081.2017.1397326
Barrio E. A., Picollo L. (2013), “Notes on ω-Inconsistent Theories of Truth in Second-Order Languages,” The Review of Symbolic Logic 6(4), 733-741. https://doi.org/10.1017/S1755020313000269
Beall J. C. (2001), “Is Yablo’s Paradox Non-circular?,” Analysis 61(3), 176-187. https://doi.org/10.1111/1467-8284.00292
Brandenburger A., Keisler H. J. (2006), “An Impossibility Theorem on Beliefs in Games,” Studia Logica 84(2), 211-240. https://doi.org/10.1007/s11225-006-9011-z
Bringsjord S., van Heuveln B. (2003), “The ‘Mental Eye’ Defence of an Infinitized Version of Yablo’s Paradox,” Analysis 63(1), 61-70. https://doi.org/10.1093/analys/63.1.61
Bueno O., Colyvan M. (2003a), “Yablo’s Paradox and Referring to Infinite Objects,” Australasian Journal of Philosophy 81(3), 402-412. https://doi.org/10.1080/713659707
Bueno O., Colyvan M. (2003b), “Paradox without Satisfaction,” Analysis 63(2), 152-156. https://doi.org/10.1111/1467-8284.00026
Cieśliński C. (2013), “Yablo Sequences in Truth Theories” [in:] Logic and Its Applications: ICLA 2013, K. Lodaya (ed.), Berlin—Heidelberg: Springer, 127-138.
Cieśliński C., Urbaniak R. (2013), “Gödelizing the Yablo Sequence,” Journal of Philosophical Logic 42(5), 679-695. https://doi.org/10.1007/s10992-012-9244-4
Cook R. T. (2004), “Patterns of Paradox,” Journal of Symbolic Logic 69(3), 767-774. https://doi.org/10.2178/jsl/1096901765
Cook R. T. (2014), The Yablo Paradox: An Essay on Circularity, Oxford: Oxford University Press.
Halbach V., Zhang S. (2017), “Yablo without Gödel,” Analysis 77(1), 53-59. https://doi.org/10.1093/analys/anw062
Karimi A. (2017), “A Non-self-referential Paradox in Epistemic Game Theory,” Reports on Mathematical Logic 52, 45-56.
Karimi A. (2019), “Syntactic Proofs for Yablo’s Paradoxes in Temporal Logic,” Logic and Logical Philosophy, forthcoming.
Karimi A., Salehi S. (2014), “Theoremizing Yablo’s Paradox,” Preprint arXiv:1406.0134.
Karimi A., Salehi S. (2017), “Diagonal Arguments and Fixed Points,” Bulletin of the Iranian Mathematical Society 43(5), 1073-1088.
Ketland J. (2004), “Bueno and Colyvan on Yablo’s paradox,” Analysis 64(2), 165-172. https://doi.org/10.1111/j.1467-8284.2004.00479.x
Ketland J. (2005), “Yablo’s Paradox and ω-Inconsistency,” Synthese 145(3), 295-302. https://doi.org/10.1007/s11229-005-6201-6
Leach-Krouse G. (2014), “Yablifying the Rosser Sentence,” Journal of Philosophical Logic 43(5), 827-834. https://doi.org/10.1007/s10992-013-9291-5
Priest G. (1997), “Yablo’s Paradox,” Analysis 57(4), 236-242. https://doi.org/10.1111/1467-8284.00081
Schlenker P. (2007), “The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth,” Journal of Philosophical Logic 36(3), 251-307. https://doi.org/10.1007/s10992-006-9035-x
Sorensen R. A. (1998), “Yablo’s Paradox and Kindred Infinite Liars,” Mind 107(425), 137-155. https://doi.org/10.1093/mind/107.425.137
Visser A. (1989), “Semantics and the Liar Paradox” [in:] Handbook of Philosophical Logic, D. M. Gabbay, F. Guenthner (eds.), vol. 11, Dordrecht: Springer, 617-706.
Yablo S. (1985), “Truth and Reflection,” Journal of Philosophical Logic 14(3), 297-349. https://doi.org/10.1007/BF00249368
Yablo S. (1993), “Paradox without Self-Reference,” Analysis 53(4), 251-252. https://doi.org/10.1093/analys/53.4.251
Yablo S. (2004), Circularity and Paradox [in:] Self-Reference, T. Bolander, V. F. Hendricks, S. A. Pedersen (eds.), Stanford, CA: Center for the Study of Language and Information, 139-157.
Yatabe S. (2011), “Yablo-like Paradoxes and Co-induction” [in:] New Frontiers in Artificial Intelligence: JSAI-isAI 2010. Lecture Notes in Computer Science, vol. 6797, T. Onada, D. Bekki, E. McCready (eds.), Berlin–Heidelberg: Springer, 90-103. https://doi.org/10.1007/978-3-642-25655-4)_8
Jak cytować
Karimi, A. (2019). Yablo’s Paradoxes in Non-arithmetical Setting. Filozofia Nauki, 27(2), 5-15. https://doi.org/10.14394/filnau.2019.0008