Problem wszechwiedzy logicznej. Krytyka światów nienormalnych i propozycja nowego rozwiązania

  • Mateusz Klonowski Katedra Logiki, Uniwersytet Mikołaja Kopernika w Toruniu
  • Krzysztof Krawczyk Katedra Logiki, Uniwersytet Mikołaja Kopernika w Toruniu
Słowa kluczowe: epistemic logic, modal logic, Rantala models, non-normal possible worlds, Łoś operator, moderately rational agent, problem of logical omniscience

Abstrakt

In this paper, we bring up the problem of logical omniscience in epistemic logic. One way of avoiding the problem is through Rantala models, where non-normal worlds are introduced. Such models are vulnerable to criticism, as we show. One of many issues that occur is the Bjerring result, which states that incorporating non-normal worlds makes the agent logically incompetent. For this reason, we propose a different solution based on positional logics.

Bibliografia

Bjerring J. C. (2013), Impossible Worlds and Logical Omniscience. An Impossibility Result, "Synthese" 190(13), 2505-2524. https://doi.org/10.1007/s11229-011-0038-y
Bostock D. (1997), Intermediate Logic, Oxford: Clarendon Press.
Jarmużek T. (2007), Minimal Logical Systems with R-operator. Their Metalogical Properties and Ways of Extensions [w:] Perspectives on Universal Logic, J. Béziau, A. Costa-Leite (eds.), Milano: Polimetrica, 319-333.
Jarmużek T. (2013), Jutrzejsza bitwa morska. Rozumowanie Diodora Kronosa, Toruń: Wydawnictwo Naukowe UMK.
Jarmużek T., Pietruszczak A. (2004), Completness of Minimal Positional Calculus, "Logic and Logical Philosophy" 1(13), 147-162. https://doi.org/10.12775/LLP.2004.009
Jarmużek T., Tkaczyk M. (2015), Normalne logiki pozycyjne, Lublin: Towarzystwo Naukowe KUL.
Karczewska A. (2017), Maximality of the Minimal R-logic, "Logic and Logical Philosophy" 27(2), 193-203. https://doi.org/10.12775/LLP.2017.008
Lechniak M. (1988), Logika epistemiczna Jerzego Łosia a teoria racjonalnego zachowania, "Roczniki Filozoficzne KUL" 26(1), 79-91.
Lechniak M. (2011), Przekonania i zmiana przekonań. Analiza logiczna i filozoficzna, Lublin: Wydawnictwo KUL.
Lemmon E. J. (1959), Is There Only One Correct System of Modal Logic?, "Aristotelian Society Supplement" 33(1), 23-56. https://doi.org/10.1093/aristoteliansupp/33.1.23
Łoś J. (1947), Podstawy analizy metodologicznej kanonów Milla, "Annales Universitatis Mariae Curie-Skłodowska" 2.5F, 269-301.
Łoś J. (1948), Logiki wielowartościowe a formalizacja funkcji intensjonalnych, "Kwartalnik Filozoficzny" 17(1-2), 23-56.
Meyer J.-J. (2001), Epistemic Logic [w:] Blackwell Guide to Philosophical Logic, L. Goble (ed.), Oxford: Blackwell Publishing, 183-202. https://doi.org/10.1111/b.9780631206934.2001.00012.x
Rescher N. (1968), Topics in Philosophical Logic, Dordrecht: Reidel. https://doi.org/10.1007/978-94-017-3546-9
Surowik D. (2013), Logika, wiedza i czas. Problemy i metody temporalno-logicznej reprezentacji wiedzy, Białystok: Wydawnictwo Uniwersytetu w Białymstoku.
Świrydowicz K. (2014), Podstawy logiki modalnej, Poznań: Zysk i S-ka.
Tkaczyk M. (2009), Logika czasu empirycznego, Lublin: Towarzystwo Naukowe KUL.
Tkaczyk M. (2013), Negation in Weak Positional Calculi, "Logic and Logical Philosophy" 22(1), 3-19. https://doi.org/10.12775/LLP.2013.001
Opublikowane
2019-03-31
© University of Warsaw. All rights reserved.
Jak cytować
Klonowski, M., & Krawczyk, K. (2019). Problem wszechwiedzy logicznej. Krytyka światów nienormalnych i propozycja nowego rozwiązania. Filozofia Nauki, 27(1), 27-48. https://doi.org/https://doi.org/10.14394/filnau.2019.0002