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Abstract
Haskell Curry’s philosophy of mathematics is really a form of “structuralism” rather than “formalism”

despite Curry’s own description of it as formalist (Seldin 2011). This paper explains Curry’s actual view

by a formal analysis of a simple example. This analysis is extended to solve Keränen’s (2001) identity

problem for structuralism, confirming Leitgeb’s (2020a, b) solution, and further clarifies structural

ontology. Curry’s methods answer philosophical questions by employing a standard mathematical

method, which is a virtue of the “methodological autonomy” emphasized by Curry (1951, 1963) and

more recently with greater clarity by Maddy (1997, 2007).
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1. INTRODUCTION

Haskell Curry’s student Jonathan Seldin (2011) observes that Curry’s view of the

nature of mathematical subject matter is best understood as a form of structural-

ism, similar to other structuralist views (Resnik 1997, Parsons 2008, Hellman

and Shapiro 2019). Curry’s methods are frequently misunderstood as “formalist,”

since Curry (1951) himself uses that word to describe his approach.1
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1Curry (1951) was written in 1939, but publication was delayed byWorldWar II. Curry states in the
Preface, “this monograph represents the views which I held in 1939; it does not represent accurately
the views which I would defend right now” (Curry 1951: v).
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Curry’s mature view can be found in his 1963 Foundations of Mathematical

Logic. But his mature view is difficult to discern even there. Seldin ascribes

the common misunderstandings of Curry’s view to several factors, including

Curry’s idiosyncratic vocabulary. Curry sought to avoid philosophical debate by

introducing neologisms to describe his ideas, among which are his distinctive

notions of a “formal system,” and that of mathematical objects or “obs.” Curry

attempted to avoid philosophical debate while also giving forceful expression to

his views. That combination causes confusion.

Curry’s avoidance stems from his strong support of the autonomy of math-

ematical methodology. Curry’s approach to formalization fits among an array

of disparate methods (Maddy 1997, 2007, Franks 2009, Simpson 2009) that

all apply standard mathematical methods to solve ontological problems, and

so minimizing philosophical partisanship. This use of standard mathematical

methods to solve philosophical problems can be called “methodological auton-

omy,” to which I will briefly return in the conclusion. Curry claims that his

view of mathematics shows how mathematics is “independent of any except the

most rudimentary philosophical hypotheses” (1951: 3), and so gives mathematics

a “pre-philosophical” independence from metaphysical assumptions (1951: 5).

Curry’s criticism of the syntactic conceptions of the formal system is an easy

way to explain Curry’s actual views. Curry criticizes the syntactic conceptions

of the formal system throughout his career and with increasing clarity (1950,

1958, 1963). Curry’s method for understanding syntactic systems is to analyze

these by means of a formal system in his sense. So, this paper first reviews

Curry’s criticisms of syntactic ideas, and then in the following section, it presents

a rudimentary formal system in Curry’s sense. The following section shows how

this analysis solves Jukka Keränen’s (2001) identity problem for structuralism.

Keränen (2001), and more briefly John P. Burgess (1999), pose the problem that

structural ontologies appear to induce identities between non-identical elements

of structures, if these structures permit non-trivial automorphisms (Parsons

2008: 107–109, Hellman and Shapiro 2019: 58–61).

This paper then presents a term system for unlabeled graphs. Unlabeled

graphs arise in philosophical debate over structural ontologies for mathematics as

an apparent example of Keränen’s (2001) identity problem. But Hannes Leitgeb

(2020a, b) finally formalizes unlabeled graphs to prove that Keränen-style iden-

tities do not arise for these. The term system in this paper confirms Leitgeb’s
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solution in an easily generalizable way, and follows Curry’s (1963) methods of

formalization.

2. SYNTACTIC SYSTEMS AS INEXPLICIT

The customary syntactic way of thinking about formal systems views them as

systems of character strings, which are classes of equivalent inscriptions, which

are already a kind of abstract object (Curry 1963: 15–16). Curry sets aside the

nominalistic aims of interpreting these character strings as mereological sums

of particular inscriptions, instances of brain activity, etc. The character strings

have the smallest components, which are then concatenated. Once one realizes

that this concatenation operation needs to be associative, then one has already

realized that there is an implicit algebraic structure in how the character strings

are built up (Curry 1963: 51–52).

In syntactic presentations of formal systems, character strings are usually

used autonymously as nouns for themselves. Customarily, the next step is to give

syntactic formation rules for defining terms and formulas. However, due to the

implicit algebraic structure of concatenation, this is imprecise and inexplicit. So

instead, Curry’s concept of an abstract formal system includes explicit operations

applying to objects, forming other objects, and generating inductive classes of

objects. The abstract objects defined this way are “obs.”

In a syntactic presentation of a formal system, there are rules of inference, or

transformation rules. Here again, Curry (1963: 64–67) criticizes how autonymous

presentation obscures the algebraic structure. Nonetheless, Curry’s concept of

a formal system likewise includes axioms and rules of inference. But we usually

want a formal system to be a deductively-generated class of sentences, a theory,

which can be interpreted as having truth values. So, the syntactic approach

leads us to focus on only certain kinds of syntactic formal systems, in which all

the objects are abstract assertions generated from axioms by rules of inference,

which Rudolf Carnap (1959) and others call a “calculus.” All syntactic objects

then fall under one unary predicate or type, marked perhaps by Frege’s assertion

turnstile, `.
Curry takes an algebraic approach to the semantics of formal systems, and

is not interested in the customary set theoretical interpretations. But this is for

clarity of language, rather than for the sake of any commitment to constructivism.
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Curry points out that some important formal systems are not calculuses, in-

cluding Church’s λ-conversion (1941), and Curry’s own combinatory logic (Curry

and Feys 1958). In these formal systems, well-formed expressions are nouns, not

sentences (Curry 1950: 352). There are three operations for forming λ-terms from

other λ-terms (Church 1941: 8–9), but no axioms or rules of inference. Moreover,

the basic predicate denotes the binary relation of reducibility between the things

denoted by such nouns, where reducibility is an analysis of a single step in an

arithmetical or algorithmic calculation (Curry 1963: 51). Yet further, the formal

language of λ-conversion does not capture a preexisting informal language, but

has a more abstract origin (Curry, Hindley, and Seldin 1972: 5).2

Any Gödelized system is also not a calculus system. A Gödelized syntactic

system is a system of numbers, such that these numbers represent formulas

and deductions, and there is a primitive recursive relation between numbers

representing deducibility (Curry 1958: 256–257). According toCurry’s conception

of abstract formal systems, the Peano axiomatic system and the corresponding

Gödelized syntactic system represent the same underlying abstract formal system.

3. ABSTRACT ANALYSIS OF A SYNTACTIC SYSTEM

In order not to get lost in the symbols of a term system, let us first look at an

exceedingly simple example. Suppose we think about palindromes in a syntactic

way. Then any palindrome has a non-trivial isomorphism to itself, or automor-

phism, φ, mapping the left side to the right and vice versa, and mapping a letter

in the middle, if any, to itself. But the left and right sides are indistinguishable by

any features “internal” to the palindrome. We intended the automorphism to be

non-trivial, but if we rely only on such “internal” properties, then it now seems

that for any element a of a palidrome, φ(a) = a. This is Keränen’s (2001) identity

problem.

In this section, we first define a syntactic formal system for palindromes, and

then apply Curry’smethods to define amore abstract andmore precise system that

can serve as an analysis of the syntactic system. The following section shows

that Keränen’s (2001) identity problem does not arise for a more precise system.

2λ-conversion can also be presented as a formal system of axioms and equations in the more usual
way (Barendregt 1984, Troelstra and Schwichtenberg 2000, Hindley and Seldin 2008: 69–75) and
thus framed in terms of assertions, and it is clearly understandable through syntactic accounts.
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In a syntactic system, we suppose there is an alphabet of letters, plus one

spacing character, and these form strings (or “words”) by concatenation. We need

to include the empty string because two mirror sequences of letters, with no letter

in the middle, can form a palindrome. In order to use variables for unspecified

strings or letters, then we need to think of these as belonging to the language we

are using in informal reasoning, or U-language (Curry 1958, 1963: 28–29). Let

(Ai)
∗ be the string Ai in reverse order. Then there are two rules for generating

palindromes:

1. Construct A1 as a string, where A1 is a letter or the empty string.

2. Given strings, A1, A2, construct the string, A2A1(A2)
∗.

These rules are in the general form of a rule in a syntactic calculus (Curry 1958)

or assertional system (Curry 1963: 64–67):

If ` A1,` A2, . . . ,` Am, then ` A0,

where the Ai are constructed strings. This treats the syntactic system as asserting

each string is constructed by an instance of a rule, indicated by the prefixed

`. Then palindromes are defined as the inductive class generated by repeated

applications of this rule on the given alphabet. That’s it.

The syntactic system consists of letters and strings, with a rule for generating

strings. The syntactic concept of a rule is the same for generating such strings,

seen as words, formulas, or sentences. There is no built-in distinction between

the types of objects and of propositions. So it seems from a syntactic view to be

appropriate to see the result of any rule as an assertion, symbolized by `.
This is so simple that it seems entirely transparent. Yet the concatenation

operation is merely assumed to occur in our visual perception, rather than being

made explicit by symbolizing it. Moreover, the symmetry in the rule is redundant.

This might seem an odd thing to say when the system is meant to generate palin-

dromes. But since there is only the one symmetry, and no further distinction to

be made on the basis of operations or rules that behave differently for the left and

right sides, the symmetry contains no information. The palindrome system does

not really have a geometric structure of having different sides or a half-rotation,

or any algebra of negative versus positive operations. Also, how to talk about the

empty string clearly? How to designate it autonymously?
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So in the abstract palindrome system, for each letter in the alphabet, bi, there

is a unary operation which can be symbolized as an infixed predicate,X ∧ bi. The

empty string is a distinct abstract object, a. If association is defined unambigu-

ously with association to the left, so that A1A2A3 ≡ (A1A2)A3, then the unary

operation can also be written by concatenating bi to the right ofX.

The abstract ob-system, P1, then, consists of arbitrary atoms, designated

by any nouns we want (letters a, bi will serve), and one unary operation defined by

each atom, which inductively generating a class of obs from the atoms. In order

to explain the formal system, we need to use U-language free variables,X, Y :

1. Each a, bi is an atom.

2. Given an atom, construct that same atom as a string.

3. Given stringX, construct the string,X ∧ bi.

The inductively generated class of strings is the subject matter of this abstract

system. What else would it be? This answers the ontological question: what are

palindromes? To be a pure mathematical object is to be an object in an abstract

formal system, or what Curry calls an “ob” (Curry 1963: 54). My example is

even more trivial than those Curry (1951: 17–27; 1958: 254–261; 1963: 52–56)

gives because it is intended solely to illustrate the difference between a syntactic

system and an abstract system. In the process of building up the abstract system

of palindromes, the palindromic shapes might seem to have been abstracted away,

but we need not think of anything having gone anywhere.

In the informal U-language, we make distinctions between nouns and verb

phrases, relations, or predicates. So far, we have only nouns. There are not yet

any axioms or rules of inference in the abstract system. Suppose we add one

relation to the abstract system. This will be written as an infix as≡. Then in order
to state the axioms, we again need to use U-language free variables,X, Y , Z. The

axioms for P1 are in the form of axiom schemes, for every ob,X and Y , whereX

and Y are free variables:

1. ` X ≡ X.

2. ` X ∧ (Y ∧ bi) ≡ (X ∧ Y ) ∧ bi.

The rules of inference are the usual rules for equality or equivalence:
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1. If ` X ≡ Y , then ` Y ≡ X.

2. If ` X ≡ Y and ` Y ≡ Z, then ` X ≡ Z.

3. If ` X ≡ Y , then ` X ∧ Z ≡ Y ∧ Z.

4. If ` X ≡ Y , then ` Z ∧X ≡ Z ∧ Y .

Then associativity can be proved for this abstract system, P1.

Curry (1958) proceeds to show how to transform a syntactic calculus sys-

tem into an abstract one with obs constructions isomorphic to constructions of

strings by syntactic rules, and conversely how to transform an abstract system

into a calculus. A syntactic system is “monotectonic” when every syntactic string

has a unique construction by means of the system rules (Curry 1963: 41). The syn-

tactic palindrome system as given is not monotectonic. The syntactic palindrome

system, A2, however, can be made into a monotectonic system by restricting in

the second rule to a single letter. A monotectonic system is then immediately con-

vertable into an abstract system with an isomorphism to a monotectonic system.

So, Curry (1958: 261–266) proves that every syntactic system meeting certain

conditions is monotectonic. One condition is that it must be decidable which

rule applies to construct each string. Another condition is a generalization of the

requirement that a well-formed formula has closed left and right parentheses.

But in general, the associativity of concatenation has to be formalized in order to

obtain an abstract formal system to which a given syntactic system is isomorphic

(Curry 1958: 268–269; 1963: 60).

4. STRUCTURALISM

Curry (1963: 57) distinguishes an abstract ob-system from its “representations.”

A representation is anything isomorphic with a formal systemwhich is an abstract

ob-system. Even to begin reasoning about an abstract ob-system, one must use

symbols, constituting a representation.

Curry’s formalization procedure results in a representation with an isomor-

phism between it and the abstract system of which it is a representation. William

W. Tait calls this sort of procedure “Dedekind abstraction” (1986: 369, n. 12;

2005: 87, n. 17). Dedekind does not identify the continuum with the class of

what are today called Dedekind cuts. Rather he introduces an abstract system

of “continuous space” (Dedekind 1963: 38), together with an isomorphism from
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the abstract system to its instantiation in the system of cuts. Likewise, Dedekind

does not identify natural numbers with any infinite system except the abstract

one. Dedekind (1963: 68, Definition 73) defines natural numbers as the infinite

abstract system ordered by a one-to-one function onto a proper part of itself, and

for which “we entirely neglect the special character of the elements.” Dedekind’s

Theorem 126 (1963: 85–86) says that any simply infinite system has a unique

isomorphism defining it recursively from the natural number system. So, it is

sufficient to consider the natural numbers as an abstract system.

Curry uses Dedekind abstraction, making him into what Geoffrey Hellman

and Stewart Shapiro (2019: 51–61) call a “sui generis structuralist,” who does not

require a set theoretical, category theoretical, or modal interpretation in order to

confirm the reality of a structure.

For Curry (1963: 61) the main reason for talking about abstract ob-systems is

that these are mathematical invariants: “Consequently it agrees with the tendency

in mathematics to seek intrinsic, invariant formulations, such as vectors, projec-

tive geometries, topological spaces, etc.” So, the basic consideration on behalf of

Curry’s abstract approach to formal systems is that it fits a trend of mathematical

practice since Dedekind’s time.3 We can now see how Curry’s structuralism deals

with the identity problem posed by Keränen (2001), and briefly by Burgess (1999).

The identity problem is that a non-trivial automorphism of a system can seem to

induce identities between non-identical elements of that system.

Let’s define a second system of palindromes, P2,with the same atoms as above,

but with a different unary operation:

1. Each a, bi is an atom.

2. Given an atom, construct that same atom as a string.

3. Given stringX, construct the string,X ∨ bi.

Let P2 have axioms and rules that are the same as P1, except with ∨ instead of

∧. We can visualize the ∧ as generating a string to the right, while the ∨ operation

3Curry (1963: 15–16) distinguishes various levels of abstraction without taking any position on
which are real. First is the abstraction of an expression or word from many utterances, thoughts, or
inscriptions of that expression. Second is the abstraction from space and time limits on inductively
defined processes, allowing for any finite number of steps. Mathematical abstraction of an inductive
process of any finite length might be seen as an extension of the idealizations used in physical science.
Third are completed infinities considered by set theory, which abstract from inductive definitions,
and which Curry does not discuss in his 1963 book. Both abstract ob-systems and syntactical systems
of expressions involve the first two levels of abstraction.
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generates a symmetrical string to the left. So there is the obvious isomorphism,

P1 ∼= P2, defined recursively by mappingX ∧ bi toX ′ ∨ bi, whereX is mapped to

X ′. With respect to the internal structures of abstract ob-systems, P1 and P2, the

respective operations, ∧bi and ∨bi, are not really different.
Then there is a third system, P3, with both operations. Even though it does

not matter which operation is which, the operations, ∧bi and ∨bi, need to be

distinguished in P3 and one must use distinct symbols for them. This is also

true in cases Keränen (2001) and Burgess (1999) discuss, such as 1 and −1 in the

additive group of integers. There is a non-trivial automorphism on P3, mapping

X ∧ bi ∨ bi to X ′ ∨ bi ∧ bi, and vice versa.4 By this automorphism, we can infer

that ` X ≡ Y if and only if ` X ′ ≡ Y ′, where X ′ is the isomorphic image of X.

Nevertheless, the automorphismdoes not induce the undesired identity statement,

` X ≡ X ′, in the combined system, P3, because P3 formalizes reasoning about

identity.5

5. UNLABELED GRAPHS

Unlabeled graphs present an excellent example for investigating Keränen’s (2001)

identity problem for structuralism. Leitgeb (2020a, b) formalizes reasoning about

unlabeled graphs. He concludes by dissolving the identity problem.

Curry’s method allows us to do the same in a different way. Unlabeled graph

terms are constructed from an empty graph, 0, by two operations: adjoining

a vertex, ai and for any two vertices, ai and aj , adjoining an edge, baiaj , connecting

those two vertices:

1. GivenX, constructX ∧ ai

2. GivenX ∧ ai ∧ aj , constructX ∧ ai ∧ aj ∧ baiaj

4Perhaps some will say these finally are the real palindromes! I would say rather that the question
of which are the real ones has been answered by an analysis of three distinct formal systems.

5Curry never says that ordinary mathematical discourse in the U-language lacks meaning, although
it is sometimes insufficiently precise. Keränen (2001: 315) argues that a structuralist metaphysics
excludes “non-relational” properties and constants from the language used to talk about structures.
So presumably, for his argument, “is an inverse of the generator of an infinite group generated by
one element” would not be a relational property, or perhaps the word, “generator,” is a surreptitious
constant. But reference to such objects as generators or their inverses seems to be necessary for
reasoning about groups.
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The unlabeled character of graphs freely generated by these two operations is

described by axioms to be given presently. Following Leitgeb (2020a), these

unlabeled graphs have undirected edges, at most one edge for any two distinct

vertices, and no loop edges from a vertex to itself. The rules of inference are the

same as for the P systems above.

Unlabeled graphs are represented by unlabeled graph terms. The idea is to

distinguish obs from their automorphic images. Graph terms allow us to make

the needed distinction linguistically by distinct terms. Then we can check whether

unwanted identities of subterms are induced by maps from one term to another.

Much like palindromes, the question of whether the subject matter is really

unlabeled graphs will be answered as fully as mathematics requires, because we

will be making all the required distinctions to capture our reasoning. In fact,

we distinguish more graphs than we would visually, since distinct terms can be

constructed with more than one copy of the same vertex or of the same edge. But

in the formal system, such terms are equated by cancellation axioms.

The identity problem is about unwanted identities. Consider two unlabeled

graphs, G1 and G2. The unlabeled graph, G1, consists of a single vertex, a1. G2

consists of two disconnected vertices, a2 and a3, and no edge. InG2, a2 6= a3. But

it might seem reasonable that a1 = a2. After all, as unlabeled graphs, each vertex

has no other properties. But if so, then the same thought leads to a1 = a3, and

then transitivity of equality brings a collapse of the two distinct vertices inG2. So,

no reasonable formal system for unlabeled graphs can include such identities. To

spell out the details, notation can be simplified. Every graph construction begins

with the empty graph, 0. So we might as well not mention it. Also, both adjoining

operations are ∧-operations so we might as well write these by concatentation, as

long as we do not neglect to include explicit axioms and rules for associativity.

So the construction operations for obs can be restated. We assume a countable

supply of obs: a0, a1, a2, . . . Assume that i 6= j 6= k 6= l. Operations:

1. GivenX, constructXai

2. GivenXaiaj , constructXaiajbaiaj

Axioms 1–4 are commutativity axioms. Commutativity axioms capture the unla-

beled character of these constructions: the order in which vertices or edges are

constructed does not matter. Axioms 5 and 6 are cancellation axioms. Axiom 5

captures both the uniqueness of each vertex despite it not having a name. Axiom

6 applies to edges analogously, since we think of these graphs as having at most
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one edge between any two vertices. Axioms 7–9 for associativity and reflexivity of

equivalence need no further explanation. Assume the following axiom schemes:

1. aiaj ≡ ajai for any graph with two applications of the vertex-adjoining

operation.

2. baiaj ≡ bajai for any graph with an application of the edge-adjoining

operation.

3. baiaj
bakal

≡ bakal
baiaj

for any graph with two applications of the edge-

adjoining operation.

4. baiaj
ak ≡ akbaiaj

for any graph with any combination of vertices and

edges.

5. aiai ≡ ai, cancels repeated adjunctions of the same unlabeled vertex.

6. baiaj
baiaj

≡ baiaj
, cancels repeated adjunctions of the same unlabeled

edge.

7. X(Y ai) ≡ (XY )ai, makes associativity explicit.

8. X(Y baiaj ) ≡ (XY )baiaj , makes associativity explicit.

9. X ≡ X.

Rules of inference are the same as for P1 above:

1. IfX ≡ Y , then Y ≡ X.

2. IfX ≡ Y and Y ≡ Z, thenX ≡ Z.

3. IfX ≡ Y , thenXZ ≡ Y Z.

4. IfX ≡ Y , then ZX ≡ ZY .

We have not defined automorphisms of unlabeled graphs formally. For our

purposes here, a fully formal system of morphisms of unlabeled graphs is unnec-

essary. Instead, informally, an automorphism is a one-to-one map f from a graph

to itself, sending:

• f : ai 7→ aj , and
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• f : baiaj
7→ bakal

,

such that

f(baiaj
bajak

) ≡ f(baiaj
)f(bajak

).

That is, an isomorphism on terms is a bijection that preserves connectivity. Axiom

3 is the only relevant axiom or rule to check whether any proposed f preserves

connectivity, in a setting with the other commutativity axioms. Anything that

might intuitively be an automorphism of unlabeled graphs has to be sufficiently

explicit to allow this to be checked.

Theremight yet be a worry as to whether commutativity axioms, plus the other

axioms and rules capture all the unlabeled graph automorphisms. For instance,

what about permutations of the indices, i, j, etc.? Such permutations would

make preserving connectivity nontrivial. But I think that the permutation of

indices is contrary to the unlabeled character of these graphs. Consider the graph,

aiaj , of two unconnected vertices. Axiom 1 says that this is automorphic with

the graph ajai. Permuting the indices would be redundant, as well as contrary

to the unlabeled character of the graphs.

This level of detail is worked out, however, merely to show that no deduction

in this formal system has a conclusion of form, ai ≡ aj or ai ≡ f(aj). This is easy

to see by inspection of the axioms and rules, since no axiom states the equivalence

of two distinct vertices, and no rule will permit the inference that two distinct

vertices are equivalent. So, this confirms Leitgeb (2020a, b) by using Curry’s

methods of formalization.

In order to differentiate between automorphisms that induce unwanted iden-

tities among subterms (or elements) and those that do not, we have treated

automorphic images of terms as distinct terms. Then we can ask whether un-

wanted identities occur. On the other hand, it is often mathematically useful to

treat isomorphic terms as identical (as “unique up to isomorphism”), and thus

as representing the same graph. The latter approach is not useful here. But we

may want to identify isomorphic graphs if instead of studying unlabeled graphs

as distinct objects, we were studying the order structure on subgraphs.6

This approach can easily be generalized, for instance, to Euclidean geometry.

Euclid postulates that for any two points, there is a line through those two points.

6Leitgeb handles this by assuming both Axiom G2 (Leitgeb 2020a: 334) that no two graphs share
the same vertices, together with Axiom E2 (Leitgeb 2020a: 335) that for any graph there is a second
graph with a subgraph isomorphic with the first graph plus one additional vertex in the second graph.
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For those two points in reverse order, then, Euclid’s postulate constructs the same

line. Reversing the order of the points induces an automorphism. But there is

nothing in this that suggests a valid inference that those two points are identical.

6. METHODOLOGICAL AUTONOMY

Formalization is a standard mathematical method for replacing imprecise lan-

guage with precise language as this becomes necessary. Here it is used for proving

and disproving identity statements. So, we need a formal system in which there

are identity statements. The definition of an abstract ob formal system in Curry’s

sense includes operations whose inductive closure can reasonably be seen as the

abstract subject matter of that formal system. So, Curry’s approach is a math-

ematically autonomous way of answering the question about the nature of the

ontology of the subject matter of pure mathematics.

PenelopeMaddy’s (2007: 367–377) discussion of “thin realism” explainsmore

about what it means for a mathematical practice to be autonomous. Thin realism

says that set theory speaks for itself, determines goals of inquiry for itself, and

can be taken to define what it is to be a set. Then sets are exactly the kind of thing

that set theoretical practice, when done well, says they are. There is no definite

boundary to this claim of authority. We want to bring specialized precision to

bear on philosophical problems, and to answer our questions clearly without

imposing putative answers that do not really answer the questions we are asking.

Maddy distinguishes the ontological claim of thinness from the semantic

idea of disquotationalism, which might seem similar. Moreover, thin ontology

discourages one from jumping to conclusions, such that the continuumhypothesis

has indeterminate truth value, just because it has not been decided.7 If so, there

can be tolerance of other methodologically autonomous mathematical practices,

as long as these likewise pose no danger to any mathematics.

Curry’s method is not autonomous in an absolute sense. Curry, Hindley, and

Seldin (1972: 7–8) cite a Dutch graduate student, Fleischhacker, for posing the

problem of decidability for being a word in a symbol system, when the class of

symbols itself might not be a recursive set in relation to the universe. Any human

must use symbols to reason about an abstract ob-system. The philosophical

7Since an autonomous practice does not have to justify its authority, Maddy (2007: 377–382) also
countenances an “arealist” stance of disengaging from ontological questions altogether as unnecessary
for the practice of pure or applied mathematics.
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questions remain about the relationship between abstract structures and the

natural world we live in. These questions do not vanish even if the ontology of

abstract structures is clarified.

I do not, however, think that it matters that Curry’s view does not explain

the ontology of informal mathematics, which Seldin (2011: 94) considers to be

one of the main criticisms of Curry’s view. Rather, it seems to me that informal

mathematics is a vast collection of unsolved problems of formalization. If many

of these problems are trivial, so much the better for the sake of autonomy.

What kinds of mathematical methods and results can answer ontological

questions autonomously? To the extent these methods are mathematically au-

tonomous they might evade philosophical criticism. Since these are autonomous

methods, we cannot expect mathematical reasons to decide for or against any

suchmethod.We can expect many suchmethods. Reversemathematics (Simpson

2009) directly answers some ontological questions by giving proofs. So reverse

mathematics is an autonomous method. Curtis Franks (2009) argues that the

primary aim of Hilbert’s program is mathematical methodological autonomy

from philosophical critique.
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