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Abstract
Alan Baker argues that mathematical objects play an indispensable explanatory role in science.
There are several examples cited in the literature as solid candidates for such a role. We discuss
two such examples and show that they are very different in their strength and (im)perfection, al-
though both are recognized by the scientific community as examples of the best scientific expla-
nations of particular phenomena. More specifically, it will be shown that the explanation of the
cicada case has serious shortcomings compared with the explanation of the case of Königsberg’s
bridges. We will argue that the latter is a perfectly reliable scientific explanation that employs
mathematical reasoning whereas the former is not.
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Platonists in the philosophy of mathematics often use explicit arguments
to defend their views. The Enhanced Indispensability Argument (EIA) for-
mulated by Alan Baker is one of them. The argument takes the following form
(Baker 2009: 613):1

(1) We ought rationally to believe in the existence of any entity that
plays an indispensable explanatory role in our best scientific
theories.
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(2) Mathematical objects play an indispensable explanatory role in
science.

(3) Hence, we ought rationally to believe in the existence of mathe-
matical objects.

In the second premise, it is claimed that mathematical objects play an in-
dispensable explanatory role in science. There are several characteristic ex-
amples in the literature cited in support of this claim. Such are, for instance,
the cicada case, the honeycomb, the bridges of Königsberg, and the asteroid
belt around Jupiter.2 We will discuss two of these examples and show that
they are very different in their strength and (im)perfection, although both are
recognized by the scientific community as examples of the best scientific ex-
planations of particular empirical phenomena. More specifically, we will show
that the explanation in the cicada case has serious shortcomings compared
with the explanation in the case of Königsberg’s bridges. We will provide ar-
guments showing, it seems to us, that the latter is, but the former certainly is
not, an example of a perfect scientific explanation in which a mathematical
explanation was used. We will prove that, in a methodological sense, the
mathematical explanation in these examples is used in many different ways.
In the first case, the mathematical explanation involved a complete mathe-
matization of the problem, while in the second case the mathematical tool
was used only as an auxiliary means in the entire explanation. It will be
shown that these differences will directly determine the reliability of each of
the explanations and, thus, their real role in supporting the platonic project.

1. THE MATHEMATIZATION
OF THE KÖNIGSBERG BRIDGE PROBLEM

Let us briefly recall the problem of the Königsberg bridges (KBP) and its
most famous solution. The KBP is a practical task from the physical world.
We can denote this practical task by TF. Its solution was proposed by
Leonhard Euler in the middle of the 18th century. A part of the old Prussian
city of Königsberg looked as shown in Picture 1:

                                                   

2 Cf., e.g., Pincock 2012: 205-206, Tallant 2013, Baker 2016, Barrantes 2019, Bianchi
2016, Colyvan 2018.
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Picture 1. Bridges of Königsberg. Source: https://bit.ly/2repgKz

The Königsberg bridge problem asks whether the seven bridges of the city
of Königsberg over the river Pregel can all be traversed in a single trip with-
out doubling back, with the additional requirement that the trip ends in the
same place it began. Euler’s solution to the problem is based on the use of —
in terms of contemporary mathematics — graph theory. Namely, the entirety
of the real situation can be represented by an abstract mathematical structure
— a concrete graph.3 To create a graph, several general steps must be taken.
These steps ignore those objects in the picture that are irrelevant to solving

                                                   

3 Since the abovementioned statement may sound somewhat confusing or, even worse,
logically incorrect, we will give a brief note here. When we talk about certain concepts and
the abstraction that refers to them, then, especially in the sphere of mathematical theory, it
is possible to speak of more levels of abstraction. Thus, for example, the concept a can be
the abstraction of the concepts b, c, d, etc., and the concept a itself, thereby, represents the
concretization of an even more general concept. In our case, the graph we are talking about
will result from the generalization of the physical objects of a city. Of course, such generali-
zation may include some other physical (either natural or artificial) configurations of physical
objects. On the other hand, the graph we are about to speak of, with four vertices and seven
branches, can be considered as a concretization of more general terms such as a graph
which has four vertices, a graph that has seven branches, or simply a concept of a graph,
the basic concept of graph theory.
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the problem, while those that are important have been preserved by being
represented by symbols that are basic concepts of graph theory. Namely, ob-
jects that are located on the land, such as buildings, streets, parks, etc., are
not considered. Then, each land entity bounded by the river is represented as
a point, and each bridge that connects two such entities is a line that connects
two corresponding points. Finally, by neglecting the river and the floating
objects on it, graph G is created (see Picture 2).4

Picture 2. Graph G: Euler’s graph of Königsberg. Source: https://bit.ly/2sAQJXc

By this generalization, a practical problem from the physical world is re-
duced to a theoretical, mathematical question about graph G. Thus, the prac-
tical problem of crossing bridges formulated earlier can be re-formulated as
a new mathematical task. We can denote it by TM: is it possible to traverse all
the edges of graph G once and only once, ending the walk in the vertex where
it began? We can generalize the question even further by asking when it is
possible to find such a path for an arbitrary graph — that is, to find Euler’s
tour. On the basis of a theorem of graph theory known as Euler’s theorem, we
find out that a necessary and sufficient condition for the existence of Euler’s
tour in a connected graph is the requirement that all vertices of the graph
have even degree.5 Since all four vertices in graph G have odd degree, it fol-
                                                   

4 In general terms, an arbitrary graph G can be defined as an ordered pair G = (V, E),
with V being a set of vertices, and E being a set of edges that connect vertices. Since each
edge connects two vertices of the graph, the elements of the set E can be represented as
two-membered subsets of the set V. For example, if the edge ek connects vertices vi and vj

then we can write ek = {vi, vj}.
5 Cf. Diestel 2005: 21-22. Having no desire to overload the text with mathematical de-

tails, we will define only a few basic terms in order to make the presentation clearer. If it is
the same whether we are talking about edge AB or edge BA, whereby this applies to all
edges of the graph, we will say that the graph is undirected. A connected graph is such an
undirected graph in which each pair of vertices can be joined by a path. The degree of a
vertex is a natural number that shows how many edges come out of the vertex.
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lows that there is no Euler’s path in it; that is, the Königsberg bridges cannot
be traversed in a way described in TF.

Let us now consider the extent to which the explanation/solution of the
previous problem is convincing and justified and ask whether we could accept
it without any doubt. We want to show that it is not possible to find a defi-
ciency in this explanation of the problem from the physical world derived
from mathematical means. When we say this, we do not refer, as it often hap-
pens in the context of explaining different problems, to the methodological
aspects of the explanation, such as efficiency, elegance, inability to be simpli-
fied, or fertility. We have the veridic aspect of the explanation in mind. In
other words, we believe that the truth of the statement to which the above ex-
planation ultimately leads cannot be called into question. Let us try to make a
case for this attitude.

First of all, we must point to an obstacle that will render our discussion
unclear if we do not pay attention to it. At first blush, it may seem that the
truth of a scientific explanation that essentially invokes mathematical consid-
erations is beyond any doubt. Such a position can be justified by the respect-
able role that mathematics, being a role model and a deductive discipline, has
among the sciences, but also based on a layman’s belief in the indubitable
truth of mathematical statements.

It is not easy to defend this position for at least three reasons. First, the
question of the truth of the statements in mathematical theories is far more
complicated than statements such as “2 + 2 always equals 4,” or “all true
statements in mathematics are provable” would suggest. The fact is that the
concept of truth in mathematical theories relates, above all, to the question of
the formal foundation of the statement, but modern mathematics raises
many questions about the usability and justification of its own statements.6

Second, the use of mathematical explanations as a means of solving a scien-
tific problem can be carried out in different ways. For example, some empiri-
                                                   

6 In this place, we do not want to address such issues, but we want to point to their ex-
istence and to the fact that neither mathematical nor philosophical community has spoken
of them as the final word. For example, the field of axiomatization of basic mathematical
theories, such as set theory, on the basis of which all other mathematical theories were
constructed, abounds with questions. How to choose a concrete set of axioms? What is the
justification for the chosen set of axioms? Does the chosen set of axioms ensure the con-
struction of a consistent theory? How to justify statements such as the continuum hypothe-
sis and the axiom of choice? These are just some of the questions that give rise to a great
deal of debates in mathematical and philosophical circles. Cf., e.g., Maddy 1990. Also,
Gödel’s incompleteness theorems have further demonstrated the complexity of the ques-
tion of the foundation of mathematical theories and the problems related to the existence
of constraints of formal systems. Cf., e.g., Smullyan 1992.
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cal explanations can be fully mathematized, while in other cases, the empiri-
cal phenomenon can be explained by a mathematical tool only partially —
that is, in combination with some other non-mathematical aids.7 It follows
that the power of mathematical arguments is not used to the same extent in
the explanation of all phenomena, if it is used at all. Finally, when we speak of
a mathematical explanation of empirical phenomenon P, we should bear in
mind that our goal is not to consider the truth of the mathematical state-
ments but the truth of the statements relating to P, which is, to some extent,
explained by mathematical statements. It is clear that the truth of statements
of one type is to some extent related to the truth of the other kind of state-
ments, depending on how and in what measure a mathematical tool is used in
explaining the scientific phenomenon. However, this does not mean that the
truth of a statement of one type implies the truth of all statements of another
type. Namely, it is possible to use mathematical facts in a concrete explana-
tion of the empirical phenomenon, but that explanation, generally speaking,
is unreliable; that is, it leads to a problematic result/statement.8

Let us go back to the KBP and its explanation. Moving the consideration
of the problem from Picture 1 to Picture 2 is an example of reducing the em-
pirical situation to an abstract model presented by a mathematical object.
The second picture ignores all objects from the first picture that are not rele-
vant to the solution of the problem. Thus, if we were to observe only the sec-
ond picture without knowing how it originated, it would be difficult to get the
idea that it was a kind of map of a certain city. There are no houses, streets, or
other city facilities in it. There is no river and no floating objects on it. On the
other hand, the objects relevant to the solution of the problem are retained
but abstracted. Thus, the symbols of the land entities are there, but they have

                                                   

7 When we say that the explanation of a scientific phenomenon is completely mathe-
matized, we do not want to say that this explanation is absolutely independent of any non-
mathematical (physical, chemical, etc.) claims. Namely, any explanation of a scientific
phenomenon presupposes perception (either directly by senses or indirectly by technical
means, such as microscopes, telescopes, simulators, etc.) of specific physical details related
to the phenomenon. In this context, any explanation is certain depending on certain em-
pirical claims. Whether this perception is reliable or not, is not the subject of this paper.
However, once the empirical phenomenon has been perceived, its explanation can take
different methodological paths. One of them is purely mathematical as in the KBP. In this
case, we are talking about a complete mathematization of the explanation. On the other
hand, there are explanations that include non-mathematical claims that go beyond the ini-
tial perception of the problem. An example of this explanation will be analyzed in the next
section.

8 An example of such a statement is the result of an explanation of a natural phenome-
non that will be described in the next section.
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completely changed shape in relation to the original objects they represent.
They have become points. Although the rivers and their symbols are no
longer represented in Picture 2, the bridges connecting land entities are rep-
resented by lines. Of course, the idea of symbolizing a concrete physical
situation from Königsberg could have been made in infinitely many different
ways. The land entities and bridges between them and other physical objects
from Picture 1 could be represented by some other geometric objects. However,
the symbolization in Picture 2 provides sufficient conditions for a mathe-
matical solution of problems from the physical world. On what basis can we
claim this?

First, the physical structure of the city is selectively mapped onto
a mathematical structure. The problem solution has moved from the field of
the physical world to the field of mathematical theory. Second, since only
objects from the physical world that are relevant for solving the Problem —
the land entities and bridges between them, in the configuration and interre-
lationships they have in the physical world — are mapped in the mathemati-
cal structure, every statement that is provable and refers to graph G has its
true counterpart in the city of Königsberg. In other words, it cannot be the
case that some statement regarding graph G is true (or not true) while the
corresponding counterpart of this statement relating to the situation in
Königsberg has the opposite truth value (not true or true, respectively). Of
course, the degree of complexity of the statement that we can see in the graph
is irrelevant. For example, it is not a true statement that in graph G there is
no vertex starting from which, using up to three edges, we can visit all the
remaining vertices. The case is the same with the counterpart of this state-
ment: in Königsberg, there is no land entity starting from which we can go to
all the other land entities using up to three bridges. The situation does not
change even when it comes to more complex statements such as that ex-
pressed by Euler’s theorem. Since it has been proven and, therefore, since it
is a true mathematical statement that it is not possible to find Euler’s path in
graph G, it follows that the statement about the impossibility of finding the
path in Königsberg as formulated in task TF is true.

The previous consideration, however, is not a proof of the methodological
statement that the solution of the mathematical problem TM leads to a true
statement relating to task TF. We want to show with more formal details not
only that there is a direct veridical connection between the solutions of tasks
TM and TF, but also that for every true statement relating to graph G we can
find the appropriate true statement about the objects in Königsberg, and vice
versa. How do we justify this statement?
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As we have just said, the statement has, above all, a methodological char-
acter, as it relates to different practical and theoretical approaches to solving
a problem. However, its justification can be mathematical again, but now
only in a meta-sense.9 First of all, as we have mentioned earlier, it is obvious
that graph G presents all the objects that are relevant to solving a specific
problem. In our case, these are bridges and land entities. Second, we have
noted that such symbolization — that is, representation of physical objects by
points and lines — although quite informal, is not only a relation between two
sets of objects but also a mapping between them. Let us describe this map-
ping more precisely. Its domain, denoted by A, is a subset of a set of
Königsberg’s physical objects. This subset is made up of physical objects rele-
vant to solving task TF — bridges and the land entities. The codomain of the
mapping — we can denote it by B — consists of elements of graph G — that is,
its vertices and edges. Let us denote this mapping by f.10

We will note, in addition, that f is a bijection. Generally speaking, the fact
that a mapping is a bijection between two sets allows us to identify in a cer-
tain way those sets in the context of their cardinality, thus abstracting from
the kind and nature of the objects of both sets. However, this fact is insuffi-
cient to provide a direct connection of truth between the statements relating
to tasks TF and TM. Indeed, from the fact that f is a bijection, we cannot infer
the information whether this mapping onto a codomain maps not only the
elements of domains but also the relationships that exist between them. In
our two tasks, both physical and mathematical, there are two relations, one
between the domain elements and the other between the codomain elements.
Regarding these relations, we note that mapping f is slightly more than a simple
bijection. Namely, it is a kind of isomorphism, a bijection that “preserves” the
structure/relation that exists in the domain of this mapping.11

                                                   

9 When we use the term “meta,” we mean that the mathematical apparatus will be used
to justify the claim about a direct truthful connection between mathematical and physical
statements.

10 Binary relation f ⊆ A×B, where A and B are nonempty sets, is a mapping from A to B
if (∀x ∈ A)(∃! y ∈ B) y = f (x). Cf., e.g., Düntsch, Gediga 2000: 35. The relation in our case,
that of symbolizing the objects of set A by the objects of set B, satisfies the previous condi-
tion. Indeed, exactly one object of set B, an edge or a vertex, is assigned to each object of set
A, a bridge or a land entity, respectively.

11 Since the concept of relation is used in different contexts in this place, additional
clarification is needed. Here we have talked about the binary relation f of “symbolizing”
between sets A and B, which turns out to be a function. Now, we are talking about two re-
lations of which one is defined in the set A and is denoted by ρF, and the other is defined in
the set B and is denoted by ρM. If the set of land entities LE = {le1, le2, le3, le4}, and the set of
bridges BR = {b1, b2, …, b7}, then it is the case that ρF ⊆ LE×BR×LE, where the ordered
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In other words, all relationships that exist between objects in the domain
also exist in the analogous sense and between the corresponding objects of the
codomain. In this way, by mapping f from the domain to the codomain, the
identical layout of all the objects relevant to the solution of our problem —
that is, the corresponding connections which existed between them in the do-
main — is mapped. Owing to these properties of mapping f we can say that for
each relationship that exists in graph G there is a corresponding relation in
Königsberg, and vice versa. It follows that it is not possible for any statement
relating to the objects of graph G to have one truth value while the Königsberg
counterpart of that statement has another one. For any proven statement re-
ferring to graph G there is a true statement that relates to the movement over
bridges and land entities of Königsberg. Thus, the practical problem of task TF

is completely mathematized and reduced to a theoretical discussion in task TM.
Every proven statement in graph G ensures the existence and accuracy of the
corresponding counterpart in Königsberg, and vice versa.

2. EXPLANATION OF THE CICADA CASE:
MATHEMATICS IN THE SERVICE OF SCIENTIFIC ASSUMPTIONS

Another example used as an illustration of a mathematical explanation of
empirical phenomena, and also marshalled in support of the platonic claim in
the second premise of the Enhanced Indispensability Argument, is the well-
known cicada case (CC).12 Let us recall the basic details of this example:

The example featured the life cycle of the periodical cicada, an insect whose two North
American subspecies spend 13 years and 17 years, respectively, underground in larval
form before emerging briefly as adults. One question raised by biologists is: why are
these life cycles prime? It turns out that a couple of explanations have been given that
rely on certain number theoretic results to show that prime cycles minimize overlap

                                                   

triplet (lei, bj, lek) ∈ ρF (i, k = 1, …, 4), (j= 1, …, 7) if and only if there is a bridge bj between
the land entities lei and lek. In a similar way, we can describe the relation ρM as a subset of
the Cartesian product V×E×V, where V is a set of vertices, and E is a set of edges of graph G.
In this case, the triplet (vi, ej, vk) ∈ ρM (i, k = 1, …, 4), (j = 1, …, 7) if and only if in graph G
there is a connection ej between the vertices vi and vk. When we say that f is an isomor-
phism, a bijection that preserves a relation from the domain, we want to point out that the
structure of the domain, the relation of its elements, is preserved in the structure of the
codomain in relation to its elements. To say formally, if it is (lei, bj, lek) ∈ ρF then (vi, ej, vk)
∈ ρM, where is f(lei) = vi, f(bj) = ej and f(lek) = vk.

12 This example has already been presented in detail in many places. Cf., e.g., Baker
2005, Bangu 2008, Panza, Sereni 2013: 209, Lange 2013: 498-499. The example has a new
version in Baker 2016, but we will deal with the original version given in Baker 2005.



VLADIMIR DREKALOVIĆ32

with other periodical organisms. Avoiding overlap is beneficial whether the other or-
ganisms are predators, or whether they are different subspecies. (Baker 2009: 614)

For example, a prey with a 12-year cycle will meet — every time it appears — properly
synchronized predators appearing every 1, 2, 3, 4, 6 or 12 years, whereas a mutant with
a 13-year period has the advantage of being subject to fewer predators. (Goles, Schulz,
Markus 2001: 33).

Thus, an explanation of one natural phenomenon is given — the fact that
the lifespan of a particular animal is expressed exclusively by a prime num-
ber. Although the aforementioned phenomenon belongs primarily to biology,
this question was raised primarily from a mathematical angle. Only prime
numbers are found when it comes to the lifespan of the insect. The question
itself contains a specific mathematical concept, and it would be expected that
the explanation must be based on mathematical means and facts.

Before analyzing the explanation of the phenomenon, let us look at what
reason could be an incentive to consider the explanation at all. Is there any-
thing extraordinary in the fact that the life cycle of North American crickets is
not a composite number in any of the two recorded cases? In other words, is
it possible that this fact is a completely random event undetermined by any
biological, mathematical, or some other fact? On the basis of the elementary
concepts of probability theory, we can say that the answer to this last ques-
tion is affirmative. However, it is not difficult to notice that the probability of
that number’s being prime is significantly lower than the likelihood of its being
composite.13 Bearing in mind that in both cases of our phenomenon (in both
subspecies) we have registered a prime number, which is a random event
with even lower probability, it seems that we can speak of justified reasons
for raising the issue regarding the CC.

Let us now turn to the explanation of the CC. It is based on several facts,
but also on some assumptions. The first fact mixes biology and mathematics:
the registered lifespans of cicadas are expressed in numbers 13 and 17. The
second fact is mathematical: a prime number is divisible only by two num-
bers — by 1 and by itself, while a composite number has more than 2 divisors.
The third fact is biological: avoidance of predators facilitates the survival of
a single animal and thus of the entire species. The first assumption is biologi-
cal: the predators of cicadas, as well as cicadas, have life cycle length in which

                                                   

13 It is easy to see that the probability that a randomly selected natural number be-
tween, for example, numbers 10 and 20, including those two numbers, will be prime, is al-
most two times smaller than the probability for such a selected number to be composite.
This closed interval of natural numbers has been chosen since it approximately covers the
numerical values obtained in the CC. It is also easy to check that the smaller displacement
of the interval limits will not significantly affect the value of the obtained probability.
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they periodically emerge. Finally, the second assumption relates to evolution:
during evolution, organisms have developed certain characteristics that give
them a better chance of survival. Thus, on the basis of previous statements, it
is possible to find an explanation for the CC. The observed animal has
evolved into a species whose lifespan is expressed by a prime number for very
pragmatic reasons. Namely, if the life cycle length of cicadas is expressed by
a prime number, assuming that the predators have some life cycles in which
they appear, the number of predators that will meet the cicadas is reduced to
a minimum. For example, when the insect life cycle length is 17 years, then it
has the chance to meet predators whose life cycle lengths are 1 or 17 years
because the number 17 is divisible only by 1 and 17. On the other hand, if, for
example, the insect life cycle length were 18 years, then it would have a chance
to encounter predators whose life cycle of appearances is 1, 2, 3, 6, 9, and 18
years.

Let us see to what extent the explanation of the CC is reliable and con-
vincing. The fact that this is an example of a mathematical explanation of
a scientific phenomenon might perhaps have prompted us to think that it is
a “safe” solution that can never be doubted. However, on the basis estab-
lished in the previous paragraph, it seems to us that there are several reasons
why the explanation can be questioned. First, the mathematical tool and the
mathematical statements used in the explanation represent only a part of all
the tools and statements that have been used in it. Indeed, apart from the
facts drawn from number theory that follow from the definition of a prime
and composite number, biological and evolutionist statements were also
used. Some of them cannot be unconditionally trusted, because there are
competing scientific theories that do not support them. Thus, the explanation
of the CC is not entirely mathematical. The truth of the non-mathematical
part of the explanation is not guaranteed, which calls into question the reli-
ability of the whole explanation. Finally, the initial problematization of the
target phenomenon, the search for a relationship between the life cycle length
and special types of numbers, is based on probability. The probability of an
event that the life cycle is expressed by a prime number is significantly lower
than the probability of the event that the life cycle will be expressed by
a composite number. However, this fact does not mean that the first outcome
is not achievable by chance; that is, it does not mean that it must be achieved
owing to the influence of certain biological and evolutionist reasons related to
encounters with predators. In other words, it is possible that thinking in
terms of probability is likely to lead the investigation in the wrong direction.

Furthermore, we want to highlight the first of the two assumptions men-
tioned in the explanation because, in our opinion, its status is particularly
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“unsafe.” More specifically, no proof has been given in support of its truth. It
appears that because cicadas emerge in certain life cycles, it is assumed that
such an appearance of cicadas should also have their predators. However,
why should predators have such life cycles? In the explanation, we have no
proof for such a statement, nor a single predator that lives in such a way. In
order not to take this consideration as empty speculation, let us point out that
mathematical biologists themselves reveal that there is still no predator of ci-
cadas with similar periodical activities in nature (see Behncke 2000: 417,
Lloyd, Dybas 1966: 146). Until we have at least one such example, what is
most likely is that predators live an unspecified number of years without any
life cycles. If so, if we do not have predators with life cycles, the whole expla-
nation must be thrown away because it will be completely unimportant if
cicadas live 17 or 18 years. The lifespan of cicadas expressed by a prime number
will not be an advantage for survival in relation to the case when this life cycle
length is expressed by a composite number. The number type will not be
relevant for survival.

Finally, the third reason that may cast doubt on the explanation of the CC
relates to one assumption that is not mentioned in the explanation, but it is
implied. Let us consider, regardless of the argument from the previous para-
graph, that there are predators with life cycles. In such a case, would the
lifespan of a cicada expressed by a prime number be an advantage in its sur-
vival? Yes, it would, but with the additional requirement — the lifespan of
a predator needs to be shorter than the lifespan of the cicadas. Let us explain
this detail. If the lifespan of a predator (PL) were shorter than the lifespan of
a cicada (CL), assuming that CL is a prime number, then the time between
their two encounters would be maximized, giving the cicada greater chances
of survival. Namely, that time would be defined as the least common multiple
(LCM) of the PL and CL numbers. If there were PL < CL — that is, if PL and
CL were coprime integers — then it would be the case that LCM(PL, CL) =
PL×CL. Hence, the LCM of two numbers would be their product, having the
highest value that LCM, theoretically, can have for two numbers.14 On the
other hand, if we had PL > CL, then the fact that CL is a prime number would
not be a sufficient condition for the time of re-encounters between cicadas
and their predators, expressed by LCM(PL, CL), to be maximized. Namely, in
general, there would be no LCM(PL, CL) = PL×CL. Indeed, if, for example, CL
                                                   

14 If, for instance, a = 17 and b = 9, then LCM (a, b) = 17×9. In general, if the natural
numbers a and b are coprime integers, then LCM (a, b) = a×b. It is clear that it can never
happen that LCM (a, b) > a×b, because it is the least common multiple. Indeed, if we allow
LCM (a, b) to exist such that LCM (a, b) > a×b, then it will not be the least common multi-
ple, since a×b is also the common multiple of these two numbers.
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= x, where x is a prime number, and PL = 2x, then LCM (PL, CL) = 2x ≠ 2x2 =
PL×CL.15 In other words, the property “is prime” referring to the number ex-
pressing the CL would not be an advantage for the survival of the species in
the case when PL > CL, as it would be in the case of CP > PL. However, as we
have already seen, we have neither biological arguments for the claim that the
predators have life cycles nor, a fortiori, any arguments for the view that
these life cycles are shorter than the cycles of cicadas.16

We have recalled the example of the CC and pointed to some of the rea-
sons why it seems to us that its explanation can be questioned. We do not
pretend to have exhausted the set of all possible remarks that can be made to
the explanation of this example, but it seems to us that the three that we have
set out represent sufficiently strong arguments to be reckoned with by any-
one who would try to defend this explanation.

3. TWO DIFFERENT ROLES
OF MATHEMATICAL EXPLANATION IN SCIENCE

The two examples analyzed in the previous sections have at least one
common thread — they are often listed in the literature as illustrating the ap-
plication of a mathematical tool in explaining empirical phenomena. Indi-
rectly, such examples attempt to support the second premise of the EIA —
that is, the claim that mathematical objects are indispensable for explaining
scientific phenomena. We are not going to deal here with the question of
whether the two examples illustrate the indispensability of the explanatory
role of mathematics in science.17 However, what seems certain is that they il-
lustrate the explanatory role of mathematical objects in science. In both ex-

                                                   

15 The consideration is similar if PL = n×x or PL = xn (n∈N).
16 For a similar criticism, cf. Dieveney 2018.
17 The question of the indispensability of mathematics to science has been raised

through the so-called Quine–Putnam indispensability argument (IA). The fundamental
difference between the IA and the EIA is that in the latter argument the emphasis is put on
the indispensability of the explanatory role of the mathematical tool in science. Histori-
cally speaking, the EIA is an “improved” version of the IA, according to which the role that
mathematical objects have in describing and explaining empirical phenomena is reduced
to quantification and indexing of the physical objects. However, there are arguments that
show that the notion of indispensability in the EIA, in connection with the explanatory role
of mathematical objects in science, is not precisely defined and that it is not easy to deter-
mine the domain of the EIA — that is, the space of the mathematical objects to which the
argument relates. Cf. Drekalović 2016, Drekalović, Žarnić 2018, Drekalović 2018.
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amples, mathematical tools are used to explain some empirical phenomenon.
But a warning is in order. Over many centuries, mathematics has achieved
a special, privileged position among scientific disciplines. With its deductively
built theories, it is often taken as a model that the other sciences may try to
emulate. Proof, as the main tool of mathematical justification, is a methodo-
logical ideal that many disciplines, formally or informally, are pursuing. The
reason is understandable: a correct proof is an explicit and hardly disputed
argument that justifies a mathematical claim. This feature of mathematical
explanation, as well as the position that this procedure holds among other
methodological tools used in the sciences, can lead us astray when it comes to
the evaluation of scientific explanations. Namely, it may be tempting to think
that the formal force of mathematical proof is transferred every scientific ex-
planation that contains a mathematical explanation. The example we have
analyzed in the third section shows that this is not the case.

We wanted to show that, on the one hand, there are examples of scientific
explanations showing the full strength of a mathematical explanation. How-
ever, we also wanted to show that, on the other hand, there are examples of
scientific explanations in which the authority of mathematical facts and
mathematical methodology is, in a certain sense, “misused”: we are talking
here about examples in which mathematical facts or methodology are used
for the purpose of scientific explanation, but these explanations are based,
inter alia, on claims, assumptions, and hypotheses that make the entire ex-
planation less than perfectly reliable. It seems to us that, on the basis of the
analysis carried out in the previous two sections, it is possible to say that the
Königsberg bridge problem (KBP) is an example of the first situation, while
the cicada case (CC) is an example of the second type. The corresponding ex-
planations of empirical phenomena that both involve a mathematical expla-
nation differ in three important respects:

1) the manner and scope of the application of mathematical expla-
nation in explaining the empirical phenomenon;

2) the role of the non-mathematical part of the explanation in the
entire explanation;

3) reliability of the entire explanation.

Considering the first aspect, we can say that in the KBP a phenomenon
from the physical world is mapped by mathematical isomorphism onto a model
that is exemplified by a concrete mathematical object — the graph. As we have
shown, the graph can be viewed as a codomain of mapping whose domain is
a set of all the objects in Königsberg that are relevant to the problem. As
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a mapping that preserves structure, isomorphism is a guarantee that all the
considerations about the graph will have their counterparts in Königsberg.
Thus, the whole problem situation is mapped from the physical world onto
a mathematical structure. Let us recall that the mathematical tool is used on
two levels. First, to reduce the physical phenomenon to mathematics, and
then to solve a mathematical problem. Isomorphism has been used in the
first part, while the theorem of graph theory has been used in the second part.
In other words, a physical phenomenon is “safely” mapped onto a field of
mathematical theory, where only objects relevant to the problem are repre-
sented. The rest of the explanation is entirely mathematical and could be
considered without any connection with the physical world.

By contrast, the methodology of using mathematical tools in the CC is
quite different. The problem has not been abstracted and mapped from the
physical world onto the space of some mathematical theory, while differenti-
ating between relevant and irrelevant objects. The problem remained in this
world with an ad hoc one-time assistance of a mathematical tool. Facts about
the number of divisors of prime and composite numbers are only auxiliary
information that fits into the main explanatory thesis: evolution develops
those biological properties of living beings that contribute to their survival.
Since the scientific problem has not been reduced to a mathematical one, its
solution cannot be mathematical either. The mathematical tool is there only
to fill gaps in the reasoning guided by the evolutionary thesis. These gaps
could not be filled without the basic facts of number theory.18 Therefore, this
tool was a necessary tool; without it the whole explanation could not be given.

Let us also note a detail in which the KBP is “less” mathematical than the
CC. Namely, the initial motivation for examining the KBP has nothing to do
with mathematics, while in the CC this motivation is par excellence mathe-
matical. In the former case, we are dealing with a practical question — a spe-
cific way of moving through space in the physical world, while in the latter we
are considering a mathematical detail — the lifespan is expressed by a special
type of natural numbers.

The second detail that we want to emphasize, and according to which the
KBP and the CC can be distinguished, relates to parts of the explanations that
are not mathematical ones. In the KBP, we can say that the non-mathematical
part of the explanation appears only in the formulation of the initial problem
and of its final solution. First, the question is raised about the possibility of
a certain kind of movement in the physical world and then the entire problem
                                                   

18 Until this moment, in the literature dealing with this phenomenon, we have not found
an evolutionary explanation of the phenomenon without using number theory, which, of
course, does not exclude such a possibility in the future.
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and its solution are transferred to the field of mathematical theory. The
mathematical model is first considered and then the solution to the problem
is given through an explicit statement and taken back again to the physical
world. The non-mathematical part of the explanation is static; that is, the
non-mathematical objects to which the problem relates have not been used to
provide the explanation. The relevant physical objects are mapped onto
mathematical ones, and the essence of the explanation is derived in mathe-
matical space, using mathematical tools only. There are no assumptions or
facts from the physical world in it.

Things in the CC are quite different. The explanation is always located in
the physical/biological world. The main assumptions that the explanation re-
lies on are non-mathematical. The mathematical tool is used only to support
the application of such assumptions in the concrete case. Therefore, the use
of mathematical explanation in the entire explanation is conditioned, inter
alia, by using the main assumptions in the explanation.19 Also, it would have
been difficult to construct the explanation if it had not used assumptions that
have no connection with mathematics — namely, the statement about the cyclic
appearance of the predator and the statement that these cycles are shorter
than the cycles in which cicadas appear.

At this point, a clarification should be made regarding the different
strengths of the explanation of the KBP, on the one hand, and the explanation
of the CC, on the other. These strengths are directly related to the reliance on
non-mathematical assumptions in the explanation. Namely, someone might
say that the explanation of the KBP is based on various non-mathematical as-
sumptions, as well as the explanation of the CC, and that, therefore, the for-
mer explanation is not much more reliable than the latter. Indeed, we could
say that some preconditions have been made in the first explanation, for ex-
ample, that the system of bridges is stable, that the “crossability” of the
bridges is constant in time, or even that the notion of “crossing the bridge”
makes sense, etc. Finally, appreciating the importance of extreme skepticism,
we could say that we also assumed the existence of Königsberg.20 However,
when we say that there are seven bridges in Königsberg, that they are given in
the configuration as in Picture 1, that it is possible to cross over them, etc., we
think about empirical claims that, at least in this paper, we do not try to
challenge. In the same way, we do not try to challenge the empirical claims
that the crickets appear every 13 or 17 years in the CC, that after birth they go
underground, etc. Therefore, in our analysis, in both cases, we do not ques-
                                                   

19 We say “inter alia” because the problem setting, in which mathematical concepts ap-
pear, predetermines the use of mathematical tools in the entire explanation.

20 I thank an anonymous reader for having brought this important point to my attention.
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tion the registered/observed empirical claims on the basis of which the ex-
planations are made. Of course, it is possible to challenge these claims, but it
would go beyond the scope of our discussion.

On this basis, we can draw a conclusion regarding the reliability of the
two explanations we have analyzed. The explanation of the KBP is an illus-
tration of the type of explanation to which it is not easy to find a serious ob-
jection.21 It draws this power from the fact that it is completely mathematized
— that is, formalized. It is not based on any assumptions, except on the as-
sumption that a certain state of affairs has been observed at the beginning,
which could call this explanation into question. By contrast, the explanation
of the CC is based on such assumptions. Therefore, the whole explanation is
uncertain and lies in the sphere of hypothesis and probability.

To summarize, although both cases we have analyzed illustrate the ex-
planatory power of mathematics in science, we have attempted to show that
they differ in important respects. On the one hand, the explanation of the
KBP is a representative example showing how one empirical phenomenon
can be described and explained, for the most part, mathematically, which en-
sures that the explanation is highly reliable. On the other hand, the explana-
tion of the CC illustrates the possibility of such use of a mathematical tool in a
scientific explanation that does not entail perfect reliability.22

                                                   

21 Let us note that the number of objects relevant to solving the KBP is rather “small,”
so the solution of the problem could possibly be made by random attempts and errors,
without the use of mathematical tools. However, the significance of the explanation of the
KBP is that the same methodology used in this explanation could have been implemented
in the case when an arbitrary number of relevant physical objects were given. The mathe-
matical process would essentially be the same regardless of the size of this number. Every-
thing would be reduced to examining the number of links that vertices have in the graph.
However, if the number of relevant physical objects was expressed by a relatively “large”
natural number, the explanation would not be attainable by random attempts.

22 On the basis of the examples analyzed in this paper, the reader might get the impres-
sion that the mathematical tool used to explain scientific phenomena is always trivial, and
that such mathematical explanations can always be understood by a layman (I thank an
anonymous reader who turned my attention to this detail). However, this is not true. The
proof of this is the already mentioned example of honeycomb, which is more than twenty
centuries old, and which was solved by a rather sophisticated mathematical tool twenty
years ago. Namely, the problem is found already in the writings of Marcus Terentius Varro
from the 1st century BC (Varro 1934), and it was solved in 1999 by a mathematician Tho-
mas C. Hales (2001). The question is: why is the shape of the basic units of a honeycomb
exactly the regular hexagon, and not some other regular or irregular polygon? The answer
is based on a rather complex apparatus of the theory of optimality that a layman can hardly
understand. Namely, it is shown that the optimal figure in the organization of the honey-
comb, when it comes to the volume of the honeycomb unit and thus the consumption of
materials for the construction of the bee habitat, is exactly the shape of a regular hexagon.
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Examples of the first type, by means of arguments such as the EIA, which
use facts about the explanatory power of mathematics in science, can lend
significant support to the platonic argument regarding the ontology of
mathematical objects. On the other hand, examples of the second type, given
their shortcomings, not only fail to provide analogous support but, on the
contrary, can undermine the platonic position.
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