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YABLO’S PARADOXES IN NON-ARITHMETICAL SETTING

Abstract
Proving a paradox from very weak assumptions helps us to reveal what the source of the paradox is.
We introduce a weak non-arithmetical theory in a language of predicate logic and give proofs for
various versions of Yablo’s paradox in this weak system. We prove Always, Sometimes, Almost
Always, and Infinitely Often versions of Yablo’s paradox in the presented weak axiom system,
which is much weaker than the arithmetical setting.
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1. YABLO’S PARADOX

To counter a general belief that all the paradoxes have self-referential
(circular) nature, Stephen Yablo designed a paradox that seemingly avoids
self-reference (Yablo 1985, 1993). Since then much debate has been sparked
in the philosophical community as to whether Yablo’s Paradox is really cir-
cularity-free or involves some circularity, at least hidden or implicit (cf. Beall
2001, Bringsjord, van Heuveln 2003, Bueno, Colyvan 2003a, b, Ketland 2004,
2005, Priest 1997, Sorensen 1998, Yablo 2004). In this section, we focus on
Yablo’s paradox and show the existence of Yablo formulas using diagonal
techniques.

Yablo considers the following sequence of sentences {Yi}:

Y1 : ∀k > 1; Yk is untrue,

Y2 : ∀k > 2; Yk is untrue,
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Y3 : ∀k > 3; Yk is untrue,

There is no consistent way to assign truth values to all the statements,
although no statement directly refers to itself. The paradox follows from the
following deductions. Suppose Y1 is true. Then for any k > 1, Yk is not true. In
particular, Y2 is not true. Also, Yk is not true for any k > 2. But this is exactly
what Y2 says, hence y2 is true after all. Contradiction! Suppose then that Y1 is
false. This means that there is a k > 1 such that Yk is true. But we can repeat
the reasoning, this time with respect to Yk and reach a contradiction again.
No matter whether we assume Y1 to be true or false, we reach a contradiction.
Hence the paradox.

Yablo’s paradox can be viewed as a non-self-referential liar’s paradox; it
has been used to give alternative proof for Gödel’s first incompleteness theorem
(Cieśliński, Urbaniak 2013, Leach-Krouse 2014). In (Karimi 2019, Karimi,
Salehi 2014, 2017), formalization of Yablo’s paradox and its different versions
in Linear Temporal Logic (LTL) yields genuine theorems in this logic.
Recently, Yablo’s strategy has been applied to present a non-self-referential
version of Brandenburger–Keisler paradox (Brandenburger, Keisler 2006) in
epistemic game theory (Karimi 2017).

Let S be a theory formulated in LT, a language of first-order arithmetic
extended with a one place predicate T(x). By ∀xT(D ( )xϕ i

F) we mean: for all natu-
ral numbers x, the result of substituting a numeral denoting ix  for a variable
free in φ is true.

DEFINITION 1. Let S be a theory in LT. Formula Y(x) is called a Yablo formula
in S if it satisfies the Yablo condition, i.e., if S ò ∀x[Y(x) ≡ ∀z > x¬T(DY(ż)F)].
Yablo sentences are obtained by substituting numerals for x in Y(x).
(Cieśliński 2013)

It is easy to prove the existence of Yablo formulas for all theories extend-
ing Robinson’s arithmetic (Ketland 2004, Priest 1997). For this, we apply
generalized diagonal lemma:

THEOREM 1. (Generalized Diagonal Lemma) Let S be a theory in LT extend-
ing Robinson’s arithmetic. Then for any formula G(x, y) in LT, there is a
formula φ(x) such that

(1) S ò φ(x) ≡ G(x, Dφ(x)F).

To construct a Yablo formula, consider the following arithmetized formula of
Yablo’s sequence:
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G(x, y) := ∀z > x¬T (Sub(y, ż)),

where Sub(y, ż) is the substitution function. Applying diagonal lemma for
G(x, y), there exists Yablo formula Y(x) for which:

(2) S ò Y(x) ≡ ∀z > x¬T (Sub(DY(x)F, ż)).

Yablo’s paradox appears in several varieties (Yablo 2004):

Always Yablo’s paradox: ∀x [Y(x) ≡ ∀z > x¬T (DY(ż)F)]

Sometimes Yablo’s paradox: ∀x [Y(x) ≡ ∃z > x¬T (DY(ż)F)]

Almost Always Yablo’s paradox: ∀x [Y(x) ≡ ∃z > x  ∀t ≥ z¬T (D ( )Y t
i
F)]

Infinitely Often Yablo’s paradox: ∀x [Y(x) ≡ ∀z > x  ∃t ≥ z¬T (D ( )Y t
i
F)]

Sometimes Yablo’s paradox is the dual version of the Always one. Indeed,
using ¬Y(x) instead of Y(x) in Always Yablo’s paradox, one can easily derive
Sometimes Yablo’s paradox. Note that Infinitely Often Yablo’s paradox is also
the dual version of Almost Always Yablo’s paradox.

The dual of Yablo’s paradox, i.e., Sometimes Yablo’s paradox, was first
given by Roy T. Cook (2004). Almost Always Yablo’s paradox and its dual
variant, i.e., Infinitely Often Yablo’s paradox, were put forward by Yablo
(2004). Yablo’s paradox and the above two variants were generalized by
Philippe Schlenker (2007). The notion of unwinding was formulated by Cook
(2004, 2014), who presented a uniform framework in which many variations
of Yablo’s paradox proceed by varying the quantifier used at the beginning of
each of the sentences. He considers an infinite sequence of sentences, each of
which says that infinitely many (but not necessarily all) of the sentences be-
low it are false. The main problem here is what patterns of sentential refer-
ence generate semantic paradoxes.

2. YABLO’S PARADOX AND ω-INCONSISTENT THEORIES OF TRUTH

Jeffrey Ketland (2005) shows that Yablo’s sentences have a non-standard
model. He argues that the list of Yablo sentences is ω-paradoxical, in the sense
that it is unsatisfiable on the standard model  of arithmetic. He has trans-
lated Yablo’s paradox into first-order logic called Uniform Homogeneous
Yablo Scheme (UHYS):

(UHYS): ∀x(φ(x) ↔ ∀y[xRy → ¬φ(y)]),
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where R is a binary relation symbol, with the auxiliary axioms stating that R
is serial and transitive:

(SER): ∀x∃y(xRy),

(TRANS): ∀x, y, z(xRyRz → xRz).

A Yablo-like argument can show that the formula ¬(UHYS ∧ SER ∧
TRANS) is a first-order tautology (Karimi, Salehi 2014), i.e., UHYS is incon-
sistent, together with SER and TRANS. Note that the inconsistency of UHYS
arises irrespective of what φ means, provided that R is serial and transitive.
Ketland (2005) shows that the associated set of numerical instances of UHYS
is consistent as it has a non-standard model.

However, for getting a contradiction from UHYS, the formula R need not
be transitive (i.e., satisfy TRANS) — a weaker condition such as the following
will do:

(W-TRANS): ∀x∃y(xRy ∧ ∀z[yRz → xRz]).

One can easily show that W-TRANS does not imply TRANS (but implies
SER), and so W-TRANS is weaker than TRANS.1

Eduardo A. Barrio (2010), Barrio and Lavinia Picollo (2013), and Barrio
and Bruno Da Ré (2018) focus on Yablo's paradox and ω-inconsistent theories
of truth. Barrio (2010) argues that Yablo’s sequences yield new boundaries to
expressive capabilities of certain axiomatic theories of truth. He shows that
Yablo’s sentences have no model in second order PA, but even in this case the
sequence is consistent. Barrio and Lavinia Picollo (2013) show that adopting
ω-inconsistent truth theories for arithmetic in the second-order case leads to
unsatisfiability.

Shunsuke Yatabe (2011) reviews Yablo’s paradox to analyze the computa-
tional content of ω-inconsistent theories and explains the correspondence
between co-induction and ω-inconsistent theories of truth. Yatabe argues in
favor of ω-inconsistent first-order theories of truth as he believes that they
are intrinsically equipped with a machinery, co-induction, which is useful to
prove properties of infinite structures. Against Yatabe, Barrio and Da Ré (2018)
present some undesirable philosophical features of ω-inconsistent theories
and identify five conceptual problems as results of ω-inconsistency.

In the rest of the paper, we introduce a weak non-arithmetical setting and
prove various versions of Yablo’s paradox in this weak system.

                                                   

1 To see that ¬(UHYS ∧ W-TRANS) is a first-order logical tautology, cf. (Karimi, Salehi
2014).



YABLO’S PARADOXES IN NON-ARITHMETICAL SETTING 9

3. WEAK NON-ARITHMETICAL SETTING

In order to prove Yablo’s paradox in a weak setting, Volker Halbach and
Shuoying Zhang introduce a weak theory in a language of predicate logic
(Halbach, Zhang 2017). By “proving a paradox” we mean that in a given the-
ory, with strictly specified assumptions, we can derive a contradiction and
conclude that this theory with such and such inference rules captures or for-
malizes the paradoxical reasoning. We assume the reader is familiar with the
general notations Halbach and Zhang (2017) used to proceed, but we list the
main notations, definitions, and theorems that will be employed below. The
language contains identity symbol, a binary predicate symbol <, and a ternary
predicate symbol Sat(x, y, z). Adding countably many new constants c1, c2, …
to the language, for each formula φ in the language one can define a closed
termφ in that language. Applying the same reasoning as Yablo’s, we simply
prove that the theory Y given by T-schema (TS) and two axioms in inconsistent:

(TS): ∀x∀y (Sat(ϕ( , )x y , x, y) ↔ φ(x, y))

(SER): ∀x∃y x < y

(W-TRANS) : ∀x∃y x < y ∧ ∀z (y < z → x < z)),

where TS is a variant of the uniform T-schema (Halbach, Zhang 2017). “Sat”
stands for satisfaction and it is to be read: For all x and y, the formula ϕ( , )x y

is satisfied by x and y if and only if φ(x, y).
Although the sentences in Yablo’s paradox are indexed by numbers, Ket-

land showed, for an arithmetical setting, that only a serial and transitive re-
lation is needed to obtain the paradox (2005). Halbach and Zhang (2017) in-
troduce a weak non-arithmetical theory including only TS, SER, and TRANS
axioms in a language of predicate logic and prove Yablo’s paradox in this
weak setting.

Note that W-TRANS not only is weaker than TRANS but also implies
SER. Therefore, in this paper, we weaken the non-arithmetical system Y to
include only TS and W-TRANS and prove various versions of Yablo’s para-
dox in this non necessarily arithmetical setting. The presented system is
much weaker than the one applied by Halbach and Zhang (2017) to prove
Yablo’s paradox. In fact, we try to obtain various versions of Yablo’s paradox
from as weak assumptions as we can get. By proving the paradox in minimal
settings, we come closer to a better understanding of the paradox structure
and hope to extend our knowledge of what the source of the paradox is.
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3.1. ALWAYS YABLO’S PARADOX

An abbreviation of Always Yablo’s paradox is:

∀n(yn ⇔ ∀i > n (yi is not true)).

We use the notation used by Halbach and Zhang (2017) and prove Yablo’s

paradox in our weak system. We write ∀z > y φ for ∀z (z < y → φ) and ψ∀  for

( , , )z y x x z∀ > ¬Sat . Instantiating φ(x, y) with ψ∀ in TS, we have:

(3) Y ò ∀x∀y(Sat(ψ∀ , x, y) ↔ ∀z > y ¬Sat(x, x, z))

(4) Y ò ∀y(Sat(ψ∀ , ψ∀ , y) ↔ ∀z > y ¬Sat(ψ∀ , ψ∀ , z))

The second equation is obtained by universal instantiation. To prove

Yablo’s paradox in our weak system Y, we assume that Sat(ψ∀ , ψ∀ , a) for

some a and reason in Y as follows: by W-TRANS, there is some b such that a

< b and ∀z (b < z → a < z). Since a < b and Sat(ψ∀ , ψ∀ , a) hold, then by (4),

¬Sat(ψ∀ , ψ∀ , b) should hold. Again by (4), there exists some c for which b < c

and Sat(ψ∀ , ψ∀ , c). Since a < b, and b < c, then a < c by W-TRANS, therefore

by (4), we have Sat(ψ∀ , ψ∀ , c), which is a contradiction! Thus, ¬Sat(ψ∀ , ψ∀ , a)

holds for all a. For arbitrary a, by W-TRANS, there exists some b such that

a < b and by (4) we have Sat(ψ∀ , ψ∀ , b). Again, repeating the above argument

yields contradiction.

3.2. SOMETIMES YABLO’S PARADOX

As mentioned before, Yablo’s paradox comes in several versions (Yablo
2004). A dual version of Always Yablo’s paradox is Sometimes Yablo’s para-
dox: Consider infinite sequence of sentences 0{ }i i=

∞Y each of which says “there
exists a forthcoming sentence that is not true”:

Y0 : ∃i > 0 (Yi is not true)

Y1 : ∃i > 1 (Yi is not true)

Y2 : ∃i > 2 (Yi is not true)

 

In short,

∀n(Yn ⇔ ∃i > n (Yi is not true)).
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Again we write ∀z > y φ for ∀z (z < y → φ) and ψ ∃ for ( , , )z y x x z∃ > ¬Sat .

Instantiating φ(x, y) with ψ∃ in TS and then universal instantiation ψ ∃ yield:

(5) Y ò ∀y(Sat(ψ ∃, ψ ∃, y) ↔ ∃z > y ¬Sat(ψ ∃, ψ ∃, z))

In order to prove Sometimes Yablo’s paradox in a weak setting, assume

Sat(ψ ∃, ψ ∃, a) for some a. By (5), there is some b > a for which ¬Sat(ψ ∃, ψ ∃, b),

thus, for all c > b we have Sat(ψ ∃, ψ ∃, c). Choose an arbitrary fixed c. Since

Sat(ψ ∃, ψ ∃, c) holds, there exists d > c > b for which ¬Sat(ψ ∃, ψ ∃, d). On the

other hand, since ¬Sat(ψ ∃, ψ ∃, b) holds, then ¬Sat(ψ ∃,ψ ∃, b) must hold. Contra-

diction! Therefore, ¬Sat(ψ ∃, ψ ∃, a) for all a. Thus, for all a, ∀z > a ¬Sat(ψ ∃,

ψ ∃, z). Choose a specific and fixed z and apply above reasoning to reach a con-

tradiction.

3.3. ALMOST ALWAYS YABLO’S PARADOX

Let us focus now on Almost Always Yablo’s paradox. Let Y0, Y1, Y2, … be a
sequence of sentences in which each sentence, roughly speaking, says “all
sentences, except finitely many, after this sentence are false.” Mathemati-
cally, this sequence is as follows:

Y0 : ∃i > 0 ∀j ≥ i (Yj is not true)

Y1 : ∃i > 1 ∀j ≥ i (Yj is not true)

Y2 : ∃i > 2 ∀j ≥ i (Yj is not true)

 

In short,

∀n(Yn ⇔ ∃i > n ∀j ≥ i (Yj is not true)).

The paradox arises when we try to assign truth values in a consistent way
to all sentences Yi’s. Assume for a moment that there is a sentence (say) Yn

which is true; so there exists i > n for which all Yj with j ≥ i are untrue. In par-
ticular, Yi is untrue. Since all the sentences Yi+1, Yi+2, … are untrue, so Yi has
to be true. Therefore, Yi is true and false at the same time, which is a contra-
diction. Hence, all Yn’s are untrue, so Y0 is true; again a contradiction.

We write ψ ∃∀ for Sat∃ > ∀ ≥ ¬ ( , , )z y w z x x w . Instantiating φ(x, y) with

ψ∃∀ in TS and then universal instantiation ψ ∃∀ yield:

(6) Y ò ∀y(Sat(ψ ∃∀, ψ ∃∀, y) ↔ ∃z > y ∀w ≥ z ¬Sat(ψ ∃∀, ψ ∃∀, w))
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To prove the paradox, assume that Sat(ψ ∃∀, ψ ∃∀, a) for some a. By (6), there

exists z > a for which ∀w ≥ z ¬Sat(ψ ∃∀, ψ ∃∀, w). In particular, for w = z, we

have ¬Sat(ψ ∃∀, ψ ∃∀, z). Since for all w > z, ¬Sat(ψ ∃∀, ψ ∃∀, w) hold, Sat(ψ ∃∀,

ψ ∃∀, z) must hold, which is a contradiction! Thus, ¬Sat(ψ ∃∀, ψ ∃∀, a) for all a.

Consider a fixed a. There exists z > a (by W-TRANS) such that

∀w ≥ z ¬Sat(ψ ∃∀, ψ ∃∀, w)

holds (indeed, ¬Sat(ψ ∃∀, ψ ∃∀, w) holds for all w). By (6), Sat(ψ ∃∀, ψ ∃∀, w)

holds, which is a contradiction.

3.4. INFINITELY OFTEN YABLO’S PARADOX

For Infinitely Often Yablo’s paradox, let Y0, Y1, Y2, … be a sequence of
sentences in which each sentence says “infinitely many sentences after this
sentence are false.” Mathematically, this sequence is as follows:

Y0 : ∀i > 0 ∃j ≥ i (Yj is not true)

Y1 : ∀i > 1 ∃j ≥ i (Yj is not true)

Y2 : ∀i > 2 ∃j ≥ i (Yj is not true)

 

In short,

∀n(Yn ⇔ ∀i > n ∃j ≥ i (Yj is not true)).

We write ψ ∀∃ for Sat∀ > ∃ ≥ ¬ ( , , )z y w z x x w . Instantiating φ(x, y) with

ψ∃∀ in TS and then universal instantiation ψ ∃∀ yield:

(7) Y ò ∀y(Sat(ψ ∀∃, ψ ∀∃, y) ↔ ∀z > y ∃w ≥ z ¬Sat(ψ ∀∃, ψ ∀∃, w))

In order to prove the paradox, assume that Sat(ψ ∀∃, ψ ∀∃, a) for some a. By

(7), we have:

∀i > a ∃j ≥ i ¬Sat(ψ ∀∃, ψ ∀∃, j).

Choose fixed b > a and c ≥ b for which ¬Sat(ψ ∀∃, ψ ∀∃, c). On the other hand,

by W-TRANS, for all i > c we have i > a, therefore, ∀i > c ∃j ≥ i ¬Sat(ψ ∀∃, ψ ∀∃, j)

holds, which means Sat(ψ ∀∃, ψ ∀∃, c). Contradiction! Thus,
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¬Sat(ψ ∀∃, ψ ∀∃, a) for all a.

Let ¬Sat(ψ ∀∃, ψ ∀∃, a) for an arbitrary and fixed a. By W-TRANS, for every i > a

there exists j ≥ i for which ¬Sat(ψ ∀∃, ψ ∀∃, a).2 This means that Sat(ψ ∀∃, ψ ∀∃, a),

which is a contradiction.

The main problem here is that the schema TS by itself is inconsistent.

Halbach and Zhang (2017) reformulate Visser’s paradox (Visser 1989) to give

a solution to this problem. They weaken TS into a consistent principle that

can be shown to be inconsistent with W-TRANS. Visser (1989) considered

the set of T-sentences Tnϕ ↔ φ. His main observation was that φ is a sentence

containing only truth predicates with index k > n. He showed that this set of

T-sentences is ω-inconsistent over arithmetic. Reformulating Visser’s para-

dox, we use the satisfaction predicate Satx(y, z, w) (x is a quantifiable vari-

able) for formulas where all quantifiers over indices are restricted to objects v

with v > y (Halbach, Zhang 2017). Instead of TS we use the following axiom:

(VS): ∀x ∀y (Saty( ( , )x yϕ , x, y) ↔ φ(x, y)),

where all occurrences of variables in index position φ(x, y) must be bound. In

contrast to TS, it is shown that the schema VS by itself is consistent (Halbach,

Zhang 2017). If ψ ∀  is defined as Sat∀ > ¬ z ( , , )z y x x z  in Section 3.1, the proof

still works and shows that W-TRANS together with VS are inconsistent.

CONCLUSIONS

The above proofs for various versions of Yablo’s paradox in a weak system
can help to characterize the nature of these paradoxes. Usually, Yablo’s para-
dox is presented in the context of the theory of arithmetic, but we have shown
that one can derive a contradiction in a very weak theory of first-order logic,
including axioms TS and W-TRANS.

                                                   

2 Actually, ¬Sat(ψ ∀∃, ψ ∀∃, a) holds for all j.
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