
MICHAŁ WROCŁAWSKI*

REPRESENTING NUMBERS

Abstract
The purpose of this paper is to consider the question of how we can represent numbers (especially
natural numbers) and how our choice of a representation affects our ability to compute various
functions. In particular, we show the importance of computability of the characteristic function of
identity in a representation of numbers. It turns out that it is a very strong assumption that sig-
nificantly increases the scope of our knowledge about a given representation, including our ability
to tell which functions are computable in this representation.

Keywords: representations of numbers, numerals, computable functions, characteristic func-
tions, identity

When performing calculations on numbers, we need a way to represent
them. A number can be represented by a set of objects of a certain cardinality
(e.g., when we count on fingers), by words spoken aloud or in thoughts,
diagrams (each bar represents a number proportional to its height). Even
a single dot can represent a number in a certain situation — e.g., as a point on
a complex plane. However, probably the most common way of representing
numbers in mathematics is representing them as finite inscriptions (sequences
of signs) and that is precisely the kind of representations that will concern
us here.

We are unable to refer to numbers in any other way than by referring to
a certain representation of them, either perceived by the senses or grasped in
thought. To support this view, we can use the following argument: if there
were no difference between a number and its representation, it would make
no sense to say that the inscriptions “5,” “V,” and “five” all represent the same
number.

* Institute of Philosophy, University of Warsaw, Krakowskie Przedmieście 3, 00-927
Warsaw, michalwro@wp.pl.

Filozofia Nauki (The Philosophy of Science)
ISSN 1230-6894

2018, vol. 26(4) [104]: 57-73
DOI: 10.14394/filnau.2018.0024

MICHAŁ WROCŁAWSKI58

In this paper, we shall consider the question of computability of certain
important functions, such as the successor function, addition, multiplication,
and exponentiation, depending on the chosen representation of natural
numbers. More specifically, one purpose of this paper is to show that, in
every “reasonable” representation of natural numbers, we should be able to
compute the characteristic function of identity: i.e., the function which de-
cides whether two numerals represent the same number.

1. THE NOTION AND EXAMPLES OF REPRESENTATIONS

We shall begin by giving a definition of a representation of a set of num-
bers Z. Even though we are primarily concerned with representations of the
set , our definition will allow that the represented set can be any Z ⊆ . We

also want to allow the possibility that the same number can be represented by
several (possibly infinitely many) numerals. We propose the following defini-
tion of a representation:

DEFINITION 1. Let Z ⊆ and A be a finite alphabet. We shall call
(S, σ) a representation of numbers from the set Z, where S ⊆ A*
is an infinite computable set, Z ⊆ is countable, and σ: S → Z is
a surjection.

For any representation (S, σ), the elements of A shall be called digits or
symbols, and the elements of S shall be called numerals. We demand that Z
should be countable because we are unable to represent uncountably many
numbers with finite sequences over a finite (or even countable) alphabet.1

The simplest representation of the set is the unary system, in which

A = {1}, S is the set of all finite sequences comprised of1 and the empty word
ε, and the function σ is defined as follows:

σ (ε) = 0,

if σ (α 1) = n, then σ (α) = n + 1.

Throughout this paper, we adopt a convention according to which, for any
natural number n,n refers to a numeral representing this number in the
standard decimal representation.

1 Let us notice that with a finite alphabet we can “imitate” an infinite set of symbols
{ai: i ∈ }. It suffices to take A = {a,1} and imitate every symbol ai with a a numeral of the
form a1 …1 with n occurrences of the digit1.

REPRESENTING NUMBERS 59

DEFINITION 2. Let (S, σ) be a representation of the set Z. We shall
say that this representation is unambiguous iff, for every n ∈ Z,
there exists exactly one numeral α ∈ S such that σ (α) = n. Oth-
erwise, we shall call the representation ambiguous.

The unary representation of natural numbers defined above is unambiguous.
The starting point for our investigations here is Stewart Shapiro’s paper

“Acceptable Notation” (Shapiro 1982). Apart from irrelevant formal differ-
ences in definitions, Shapiro’s notations can be equated with unambiguous
representations of the set of natural numbers as defined in this paper. A part
of the terminology and notations used throughout this paper comes from
Konrad Zdanowski (2012), sometimes in a modified form.

Like Shapiro, we shall consider mostly representations of natural num-
bers. However, in contrast to his paper, we shall also include ambiguous rep-
resentations. Such representations are very common in mathematics; for in-
stance, both 2 + 6 and 8 represent the same number.

It might seem that the only “real” representation of a number is its stan-
dard decimal representation and all the terms, including functional predi-
cates, are merely intermediate stages of a calculation leading to that “correct”
representation of a number. We reject this position for the following reasons:

1. There is no reasons to assume that some letters, digits or symbols (or
whatever we wish to call them), in this case functional predicates, should be
arbitrarily rejected from the set of admissible symbols used to generate numer-
als. It seems that the status of all such symbols is exactly the same: they are
signs on paper (or on another surface). The meaning of a sequence of symbols
(a numeral) does not need to be the resultant of the meaning of individual sym-
bols; it can be assigned to it by the function σ in a completely arbitrary way.

2. In many commonly used representations of numbers, the calculations
performed on numbers represented by individual digits are somehow con-
tained in numerals. For example, if a digit representing a smaller number
stands after a digit representing a larger number in a Roman numeral, then we
need to add them up. If their order is reversed, we need to subtract the smaller
number from the larger number. According to this convention: VI = V + I = 6
and IV = V – I = 4. Another example is the convention of creating names for
numerals in the German language. The inscription “zweiundvierzig” (literally:
“two-and-forty”) is the German name for the number 42. Thus, the most ba-
sic name of this number in German contains something we might call a func-
tional predicate. There is no significant difference between + and “und.” They
both mean the same function.

MICHAŁ WROCŁAWSKI60

3. In many cases, writing a number in its decimal representation need not
be the optimal solution. The numeral 2,8 · 1016 is much more readable than
the numeral consisting of 28 followed by fifteen zeroes. In the same way,
when we consider the divisibility of numbers, it is much more useful to know
that “p is the hundredth prime number” than to know all the digits of its
decimal representation. However, if, for whatever reason, we should need to
calculate p2, then we would prefer the latter representation. The conclusion is
that there is no such thing as the “default” representation of a number; it all
depends on the situation.

The matter is even more complicated when we go beyond natural num-
bers. There is no answer to the question of which representation is objectively

better: 8 or 2 2 ,
1
3 or 0.(3), or

1
51 or

6
5 ?

For the above reasons, we allow each number to be potentially repre-
sented by many (possibly infinitely many) numerals, none of which should be
considered “standard.” In other words, all such representations count as
equally “valid.”

Before we start a more formal part of this paper, let us take a brief look at
yet another aspect of our definition of a representation: namely, the set of
objects we wish to represent. We have decided that it is going to be an infinite
computable subset of , but this is obviously not the only possibility. An im-
portant example worth mentioning is Church and Kleene’s theory of nota-
tions of ordinal numbers (Church 1938, Kleene 1938; see also Rogers 1967).
An interesting difference between Kleene’s concept and ours is that Kleene
does not assume that the set of all numerals must be computable. What he
assumes is the computability of the χ{0} function, which is the function that
returns TRUE if and only if its argument is a numeral which represents 0,
otherwise it returns FALSE.

2. COMPUTABILITY OF FUNCTIONS IN REPRESENTATIONS

In this section, we shall define some key notions necessary to describe
properties of various representations and relations between representations.

REMARK 1. Since we have assumed that the alphabet is finite and the set of all
numerals is computable, for each representation it is possible to:

1. decide whether it is a numeral of the considered representation for each
sequence of symbols over the given alphabet,

REPRESENTING NUMBERS 61

2. generate an enumeration of all numerals of this representation (which,
of course, does not have to be identical with the standard order on numbers).
For the purposes of this paper, let us assume that, for any representation of
numbers, we shall denote the consecutive numbers in this enumeration as:
α0, α1, … .

DEFINITION 3. Let (S, σ) be a representation of Z ⊆ . Then for
any function F: Zr → Z, by Fσ: Sr → S we shall mean a function
such that, for any a1, …, ar, b ∈ S, the following condition is sat-
isfied: Fσ (a1, …, ar) = b ⇒ σ (F(σ (a1), …, σ (ar))) = σ (b).

Function Fσ shall be called an interpretation of the function F in the repre-
sentation (S, σ). If there exists a computable function Fσ satisfying the above
condition, then we shall say that F is computable in (S, σ).

REMARK 2. If the representation is ambiguous, then there can be many such
functions. In other words, a function is computable in a given representation
if there exists an algorithm which reads any numeral (or a finite sequence of
numerals) on the input and returns any numeral which represents the value
of the computed function on the output.

The above remark is closely related to the earlier assumption that every
numeral representing a number is equally “valid” and that none of these nu-
merals is privileged in any way.

The notion of computability of functions in representations defined above
can sometimes turn out to be too weak. Suppose we have a representation
(S, σ) of the set in which the successor function is computable. Let us as-
sume that an algorithm which computes this function reads a numeral α on
the input and returns a numeral β on the output. Perhaps we wish to know if
numeral β′ (different from β) also represents the successor of the number
represented by α. The assumption that the successor function is computable
in this representation does not guarantee that we can find this out. This is
why we shall introduce the notion of characteristic functions and define the
computability of such functions in representations.

DEFINITION 4. Let R ⊆ Zk. The characteristic function of the rela-
tion R is the function χR such that for any a1, …, ak ∈ Z the fol-
lowing holds:

χR (a1, …, ak) = TRUE ⇔ R(a1, …, ak),

χR (a1, …, ak) = FALSE ⇔ ~R(a1, …, ak).

In particular, we shall denote:

MICHAŁ WROCŁAWSKI62

χ (a1, a2) = TRUE ⇔ a1 = a2,

χ (a1, a2) = FALSE ⇔ a1 ≠ a2.

Let us adopt the following convention throughout this paper: whenever
we speak of functions, unless explicitly stated otherwise, we mean only func-
tions whose both arguments and values are numbers (in particular, they are
not logical values).

DEFINITION 5. Let (S, σ) be a representation of Z ⊆ . For any
function f: Zr → Z, we shall say that the characteristic function χf

is computable in (S, σ) iff there exists an algorithm which reads
numerals a1, …, ar, β ∈ S on the input and returns TRUE or
FALSE — the value of function χf (σ (a1), …, σ (ar), (β)) on the
output.2

The above definition can be naturally extended to cover the computability of
characteristic functions of any relations.

Let us consider the relation between the two notions of computability de-
fined above.

THEOREM 1. Let (S, σ) be a representation of Z ⊆ and f: Zk → Z, for a certain
k ∈ . If χf is computable in (S, σ), then f is computable in it as well. If χ= is
also computable in this representation, then the implication in the opposite
direction also holds.

PROOF. Let (S, σ) be a representation of Z and f be a function. Let us assume
that χf is computable in this representation. We shall prove that f is also com-
putable. Suppose we want to compute the value of fσ (a1, …, ak) for some a1, …,
ak ∈ S.3 We take a recursive enumeration of all numerals and we check them
one by one until we find αi such that χf

σ
 (a1, …, ak, ai) = TRUE. Then αi = fσ (a1,

…, ak) is the value of the function we were looking for.
Now suppose that χ= and f are computable in (S, σ). We shall prove that χf

is computable as well. We want to find the value of χf
σ

 (a1, …, ak, b) for certain
a1, …, ak ∈ S. Since f is computable, we can find a numeral c such that σ (f (a1,
…, ak)) = σ (c). Then:

χf (a1, …, ak, b) = TRUE ⇔ σ (b) = σ (c),

χf (a1, …, ak, b) = FALSE ⇔ σ (b) ≠ σ (c). ■

2 It is important to emphasize that TRUE and FALSE are not symbols from the alpha-
bet A, nor from the set S, but they are additional symbols representing logical values.

3 If (S, σ) is ambiguous, then obviously it is possible that there are many such functions.
However, we just need to find the value for any of these functions.

REPRESENTING NUMBERS 63

3. CRITERIA FOR SIMILARITY OF REPRESENTATIONS

We want to discuss the question: when can two representations be con-
sidered similar? In mathematics, two objects that are “nearly the same” (they
have the same structure) are commonly referred to as isomorphic. Mathe-
matical investigations are often carried out “up to isomorphism;” thus, iso-
morphic objects are equated with each other.

We shall say that two representations are isomorphic if there exist com-
putable functions Fτ

σ and Fσ
τ which shall be called translations between these

representations.4

DEFINITION 6. Representations (S, σ) and (T, τ) of Z ⊆ are iso-
morphic iff there exist computable functions Fτ

σ and Fσ
τ such that:

∀a ∈ S ∃b ∈ T (Fτ
σ (a) = b ∧ σ (a) = τ (b)),

∀b ∈ T ∃a ∈ S (Fσ
τ (a) = b ∧ σ (a) = τ (b)).

However, this definition raises some problems. Let (S, σ) and (T, τ) be
representations of a certain set Z. Let S = {αi: i ∈ } and T = {βi: i ∈ }. Sup-
pose that algorithms computing translations Fτ

σ and Fσ
τ, respectively, read αi

on the input and return βi on the output, or read βi on the input and return αi

on the output (for any natural number i). For example, an algorithm that cal-
culates Fτ

σ reads numeral α6 on the input and returns β6. Suppose, however,
that numerals β6 and β8 represent the same number in (T, τ). The assumption
that both representations are isomorphic does not guarantee that it will be
possible to establish that that is the case. For this reason, we define another
criterion.

DEFINITION 7. Representations (S, σ) and (T, τ) are strongly iso-
morphic iff there exists a computable function Idτ

σ: S × T →
{TRUE, FALSE} such that for any a ∈ S, b ∈ T:

Idτ
σ (a, b) = TRUE ⇔ σ (a) = τ (b),

Idτ
σ (a, b) = FALSE ⇔ σ (a) ≠ τ (b).

Of course, we would like to know what the relation is between isomor-
phism and strong isomorphism of representations.

4 It is important that we demand that these functions should be computable. Without
this assumption, any two representations would be isomorphic, thus making this notion
utterly useless.

MICHAŁ WROCŁAWSKI64

THEOREM 2. If representations (S, σ) and (T, τ) are strongly isomorphic, then
they are isomorphic.

PROOF. Suppose that representations (S, σ) and (T, τ) are strongly isomor-
phic. We want to show that they are isomorphic. We shall show that there
exists a computable translation Fτ

σ from (S, σ) to (T, τ) (the proof of existence
of a translation in the opposite direction is analogous).

Let a ∈ S. Since T is computable, and thus recursively enumerable, we
check all the numerals from this set one by one until we find such b ∈ T that
Idτ

σ (a, b) = TRUE (we can check it because we assumed that these represen-
tations are strongly isomorphic). Then the translation returns b on the out-
put. ■

It turns out that the implication in the opposite direction does not hold.

THEOREM 3. There exist representations (S, σ) and (T, τ) that are isomorphic,
but not strongly isomorphic.

Examples of such representations are direct consequences of Theorem 5.
We will show now that — just like in the case of two notions of computability
— both notions of isomorphism also become equivalent if we assume that the
characteristic function of identity is computable.

THEOREM 4. For any representations (S, σ) and (T, τ) of Z ⊆ with computable
function χ=, these representations are strongly isomorphic iff they are iso-
morphic.

PROOF. The implication (⇒) has already been proved for all representations.
We shall now prove the implication (⇐). Suppose that (S, σ) and (T, τ) are
isomorphic. Let Fτ

σ (a, b) be a computable translation from (S, σ) to (T, τ). Let
a ∈ S and b ∈ T. We would like to know if σ (a) = τ (b). We use an algorithm
(which we have assumed to exist) to find b′ = Fτ

σ (a). Since χ= is computable in

(T, τ), we can calculate Idτ
σ (a, b) in the following way: Idτ

σ (a, b) = χ= (b, b′). ■

REMARK 3. In Theorem 4, it suffices to assume that χ= is computable in any of
the representations under consideration because — as we shall prove later —
in isomorphic representations, exactly the same functions are computable.

We shall now prove several properties of the relations between represen-
tations defined above.

THEOREM 5. If χ= is not computable in (S,σ), then (S,σ) is not strongly iso-
morphic to any representation.

REPRESENTING NUMBERS 65

PROOF. Let (S, σ) be a representation in which χ= is not computable. Let (T, τ)
be any representation. Suppose that these two representations are strongly
isomorphic. Then the following functions are computable: Idτ

σ and transla-
tions between these representations Fτ

σ and Fσ
τ. For any given a, a′ ∈ S, we

want to find the value of χ= (a, a′). However, we assumed in particular that we
can calculate Fτ

σ (a′) and Idτ
σ (a, Fτ

σ (a′)).

The following are equivalent:

Idτ
σ (a, Fτ

σ (a′)) = TRUE,

σ (a) = τ (Fτ
σ (a′)),

σ (a) = σ (a′),

χ= (a, a′) = TRUE.

REMARK 4. In particular, it follows from Theorem 5 that such a representation
is not strongly isomorphic even to itself.

DEFINITION 8. Representations (S, σ) and (T, τ) are equivalent iff
for every function f the following condition holds: f is comput-
able in (S, σ) ⇔ f is computable in (T, τ).

DEFINITION 9. Representations (S, σ) and (T, τ) are χ-equivalent
iff for every function f the following condition holds: χf is com-
putable in (S, σ) ⇔ χf is computable in (T, τ).

THEOREM 6. Let Z ⊆ and let (S, σ) and (T, τ) be representations of Z. If these
representations are isomorphic, then they are equivalent.

PROOF. Let Z ⊆ and let (S, σ) and (T, τ) be representations of Z. Let Fτ
σ be a

translation from (S, σ) to (T, τ) and Fσ
τ — a translation from (T, τ) to (S, σ).

Let f: Z → Z be computable in (S, σ) (without loss of generality we assume
that f is unary). We shall prove that f is computable in (T, τ).

Let b ∈ T. We calculate f (τ (b)) in (T, τ). We know that there exists a ∈ S
such that Fσ

τ (b) = a and it follows from our assumption that we can find such
a. Let a′ = f σ (a), where f σ is a computable function which represents f in
(S, σ), and let b′ = Fτ

σ (a′) (both these functions are computable due to our
assumptions). Let us denote n = σ (a) = τ (b) and n = σ (a′) = τ (b′). Then n′ =
f (n). It follows that f (τ (b)) = n′. But there is an algorithm which reads b ∈ T
on the input and returns b′ ∈ T such that f (τ (b)) = τ (b′)). Therefore, f is
computable in (T, τ).

The proof of the implication in the opposite direction is analogous. ■

MICHAŁ WROCŁAWSKI66

THEOREM 7. Let Z ⊆ and let (S, σ) and (T, τ) be representations of Z. If these
representations are isomorphic, then they are χ-equivalent.

PROOF. Let representations (S, σ) and (T, τ) be isomorphic and let function f
be such that χf is computable in (S, σ). We shall prove that f is also comput-
able in (T, τ).

Since both representations are isomorphic, there exists a computable
translation Fσ

τ: T ⇒ S. Then for any a, b ∈ T the following holds: χf
τ (a, b) =

χf
σ (Fσ

τ (a), Fσ
τ (b)), where χf

σ and χf
τ are functions interpreting χf respectively in

representations (S, σ) and (T, τ) (without loss of generality we can assume
that f is unary). Since χf

σ and Fσ
τ are computable, we conclude that χf

τ is also
computable. ■

THEOREM 8. For any representation (S, σ) of Z with computable function χ=

there exists an unambiguous representation (T, τ) of Z strongly isomorphic to
(S, σ).

PROOF. Let (S, σ) be a representation. Let α0, α1, α2, … be a computable enu-
meration of all numerals from S. We define an infinite sequence of sets T0, T1,
T2, … as follows:

T0 = ∅,

1

1

if () (),

{ }, otherwise.

n i n i n

n

n n

T

T

T

σ α σ α

α

≤

+

+

∃ =
=
 ∪

Let T = ∪n ∈ Tn and τ = σ ∩ (T × Z). We shall prove that (T, τ) is an unam-
biguous representation of Z strongly isomorphic to (S, σ).

First, we shall prove that (T, τ) is a representation of Z. To this end, we shall
prove that all the conditions from the definition of a representation hold.

Condition 1: T ⊆ A*, where A is finite. That is the case because
T ⊆ S ⊆ A*, where A is finite.

Condition 2: T is computable. Let α ∈ A*. We want to check if
α ∈ T. We can check if α ∈ S.

If α ∉ S, then α ∉ T because T ⊆ S. If a ∈ S, then there exists n ∈ such that
α = αn. Let us check numerals in the sequence {αn}n ∈ one by one until we
find such n. In which case: αn ∈ T ⇔ ∃i ≤ n σ (αi) = σ (αn).

We can find out if this condition is satisfied because we only need to check
if σ (αi) = σ (αn) holds for finitely many numerals. This is computable because
we assumed that χ= is computable in (S, σ). Thus, T is computable.

REPRESENTING NUMBERS 67

Condition 3: τ : T ⇒ Z is a function onto Z.

It is obvious that τ = σ ∩ (T × Z) is a function. We want to show that this
function is onto Z.

Let a ∈ Z. Since σ is onto Z, we conclude that, for a certain natural num-
ber n, the following holds: σ (αn) = a. If αn ∈ T, then τ (αn) = a. Otherwise, there
exists i ≤ n such that σ (αi) = σ (αn). Let us take the smallest such i. It follows
from the definition that αi ∈ Ti ⊆ T. Therefore, we conclude that αi ∈ T and
τ (αi) = a. It follows that τ is onto Z. Therefore, (T, τ) is a representation of Z.

It is a simple conclusion from the definition of the sequence T0, T1, T2, …
that this representation must be unambiguous. It is also strongly isomorphic
to (S, σ). For, let us take any a ∈ S and b ∈ T ⊆ S. Since T ⊆ S, it follows that:
Idτ

σ (a, b) = χ=(a, b). However, we assumed that χ= is computable in (S, σ). ■

What conclusions can be drawn from the above theorems? Undoubtedly,
strong isomorphism is the strongest of the criteria of similarity of represen-
tations we have considered. It seems that we can claim that if two represen-
tations are strongly isomorphic, then — from our point of view — they are
“nearly identical.”5

However, this “near identity” is considered from a computational or —
philosophically speaking — cognitive perspective. It assumes that two repre-
sentations are not only similar (have a similar structure), but also that we can
determine (compute) what this similarity consists in — i.e., which numerals
in one representation correspond to which numerals in the other. It turns out
that such a strong notion is only relevant when we consider representations
with the computable characteristic function of identity. As a summary of this
part of the paper, let us formulate the following conclusions:

1. Strong isomorphism is the strongest of all the criteria of similarity of
representations formulated here.

2. If, in a given representation, the characteristic function of identity is
not computable, then the representation is not strongly isomorphic to any
representation. In other words: we have no strong criterion to compare it with
other representations.

3. If, however, in a given representation, the characteristic function of iden-
tity is computable, then the representation is strongly isomorphic to a certain

5 Of course, such “near identity” is a relative notion. It depends on what properties of
representations we want to preserve. E.g., from the point of view of computational com-
plexity, two strongly isomorphic representations can differ significantly. However, we are
not concerned with such issues in this paper.

MICHAŁ WROCŁAWSKI68

unambiguous representation. If we assume that a strong isomorphism pre-
serves all the important properties of representations, then it follows that, as
long as we consider only representations where χ= is computable, allowing
ambiguous representations is insignificant in the following sense: such repre-
sentations do not possess any important properties other than those already
possessed by some unambiguous representations. Although departing from
the domain of representations with computable function χ= can significantly
broaden the scope of our inquiry, our ability to compare such representations
with each other is unfortunately very limited.

4. COMPUTABILITY OF FUNCTIONS
ON NATURAL NUMBERS IN VARIOUS REPRESENTATIONS

We want to consider the question of the computability of various func-
tions in a given representation if we know that certain other functions are
computable in it. In this part of the paper, we limit ourselves to natural num-
bers. While research in this area is still under way, here we give some exam-
ples of when the assumption of the computability of χ= makes a difference
when considering the computability of certain other functions.

THEOREM 9. Let (S, σ) be a representation of . The following conditions are
equivalent:

(1) (S, σ) is isomorphic to the standard representation of .

(2) (S, σ) is strongly isomorphic to the standard representation of .

(3) The successor function and χ= are computable in (S, σ).

PROOF. The equivalence of (1) and (2) follows from Theorem 4 because χ= is
computable in the standard representation of .

The implication (1) ⇒ (3) follows from Theorems 6 and 7 because the suc-
cessor function and χ= are computable in the standard representation of
and computability of all functions (both numerical and characteristic) is pre-
served by isomorphism of representations.

We shall now prove the implication (3) ⇒ (1). Let (S, σ) be a representa-
tion of in which the successor function (denoted as Succ) and χ= are com-
putable. In this representation, there is a numeral representing number 0.
Let us denote such a numeral by α.

REPRESENTING NUMBERS 69

We shall show how to compute translations between (S, σ) and the stan-
dard representation. Let λ be a numeral of (S, σ). For every natural number i,
let us denote λi = Succσ (Succσ (… (α) …)), where the successor is iterated i times
in λi. We compare one by one each λi with λ until we find i such that σ (λ) =
σ (λi). In which case σ (λ) = i, so the numerali represents the same number
in the standard representation as the numeral λ in (S, σ).

Letn be any numeral of the standard representation (denoting — ac-
cording to the convention — number n). To find its counterpart in (S, σ), we
calculate λn defined as above. ■

CONCLUSION. Let (S, σ) be a representation of in which the successor function
and χ= are computable. Then, in such a representation, exactly those func-
tions are computable which are computable in the standard representation of

, including, in particular, addition, multiplication, and exponentiation.

PROOF. It is an immediate conclusion from Theorems 6 and 9. ■

THEOREM 10. There exists a representation (S, σ) of in which the successor
function is computable, but addition, multiplication, and exponentiation are
not computable.

PROOF. We construct (S, σ) as follows:
The alphabet consists of symbols:0,1, a. The numerals are all finite non-
empty sequences of symbols from the alphabet which contain at most one
occurrence of a.

Let Z ⊆ be uncomputable in the standard representation. We construct

σ in the following way:

σ (0) = 0,

σ (1) = 1,

σ (a) = 0 ⇔ 1 ∉ Z,

σ (a) = 1 ⇔ 1 ∈ Z.

Also, for any α ∈ S:

σ (α 0) = σ (α),

σ (α 1) = σ (α) + 1,

σ (α a) = σ (α) ⇔ lh(α) = n ∧ n +1 ∉ Z,

σ (α a) = σ (α) + 1 ⇔ lh(α) = n ∧ n +1 ∈ Z,

MICHAŁ WROCŁAWSKI70

where is a concatenation and lh (α) is the length of the sequence α.
This is a correct representation because every natural number n is repre-

sented by at least one numeral, namely1 …1 consisting of n digits1 with
the exception of number 0, which is represented by the numeral0. The suc-
cessor function in (S, σ) is defined as follows: Succ(α) = α 1. This function is
computable.

We shall show that addition is not computable in this representation. In this
part of the proof, for any natural number n ≥ 1, let us denote: λn =0 …0a,
where λn consists of n – 1 digits0 followed by one occurrence of a. For any
sequence α ∈ S and any symbol b ∈ A, let #b (α) denote the number of occur-
rences of b in the numeral α. We want to find out whether n ∈ Z.

We compute λn + λn in (S, σ). We know that σ (λn) is equal to 0 or 1. Thus,
σ (λn +σ λn) is equal to 0 or 2. If n ∈ Z, then σ (λn) = 1 and σ (λn +σ λn) = 2.
Then, there are the following possibilities:

#1 (λn +σ λn) = 1 ∧ #a (λn +σ λn) = 1

or

#1 (λn +σ λn) = 2 ∧ #a (λn +σ λn) = 0.

If, however, n ∉ Z, then σ (λn) = σ (λn +σ λn) = 0 and then #1 (λn +σ λn) = 0.
It is easy to find out which of these is the case and thus — whether n ∈ Z.

It follows that Z is computable in the standard representation, which contra-
dicts our assumption. Therefore, addition is not computable in (S, σ).

Similarly, we show that multiplication and exponentiation are not com-
putable in (S, σ). Let us denote: λn =1 …1a, where λn consists of n – 1 dig-
its1 followed by one occurrence of a. Then we compute, respectively, λn · λn

or λn11 in (S, σ) (notice that they both return the same result; we shall only
provide a proof for multiplication).

Assume that multiplication is computable in (S, σ). We shall prove that Z
is also computable then. Let n ∈ . We want to find out whether n ∈ Z. With-
out loss of generality, we can assume that n ≥ 2.6 Let α ∈ S be the result of
multiplication λn · λn in (S, σ). We know that σ (λn) is equal to either n – 1 or
n. Therefore:

If σ (λn) = n – 1, then σ (λn ·σ λn) = (n – 1)2 = n2 – 2n + 1. There-

fore, #1 (α) = n2 – 2n or #1 (α) = n2 – 2n +1.

6 The algorithm which is supposed to find out whether n ∈ Z will have answers for n ∈
{0, 1} explicitly given as special cases.

REPRESENTING NUMBERS 71

If σ (λn) = n, then σ (λn ·σ λn) = n2. Therefore, #1 (α) = n2 – 1 or

#1 (α) = n2.

Notice that, for n ≥ 2, we can find out which of these cases occurs. If the for-
mer is the case, then n ∉ Z; otherwise n ∈ Z. Thus, we have obtained contra-
diction with the assumption that Z is not computable. Therefore, multiplica-
tion (and similarly exponentiation) is not computable in (S, σ). ■

THEOREM 11. For any C ⊆ , there exists a function f on natural numbers such
that, for every representation (S, σ) of with both f and χ= computable, χC is
also computable in (S, σ).

PROOF. Let C ⊆ . We shall construct f: → in the following way:

1 ,

()

0 .

if n C

f n

if n C

∈
=
 ∉

Suppose that f and χ= are both computable in (S, σ). Let λ ∈ S. We shall

show how to find out if σ (λ) ∈ C. Let α be a certain numeral representing 1 in
(S, σ). Suppose that an algorithm calculating f in (S, σ) read λ on the input
and returned β on the output. We need to establish whether β is a numeral
representing 0 or 1. The following are equivalent:

χ=(α, β) = TRUE,

σ (β) = 1,

f (σ (λ)) = 1,

n ∈ C,

χC = TRUE.

Thus, if χ=(α, β) = TRUE, then χC = TRUE. Similarly, if χ=(α, β) = FALSE,

then χC = FALSE. We conclude that χC = χ=(α, β) = χ=(fσ (λ), β). It follows that

χC is computable in (S, σ). ■

THEOREM 12. For any at most countable set of functions on natural numbers F
and any C ⊆ such that C ≠ ∅, C ≠ , there exists a representation (S, σ) of
in which all functions from F are computable, but χC is not computable.

PROOF. Without loss of generality, let us assume that all functions in F are
unary and that F = {fi}i ∈ is an infinite countable set. We construct (S, σ) as

MICHAŁ WROCŁAWSKI72

follows: The alphabet A consists of standard digits0, …,9, symbolf , sym-
bols (,) and the comma.

All numerals of the standard representation are also numerals of (S, σ).
For any λ ∈ S and any natural number i:f 1 …1 (λ) ∈ S, where the number
of occurrences of symbol1 equals i.

Let Z ⊆ be any set uncomputable in the standard representation. Both Z
and – Z must be infinite then. Let a0, a1, … be an enumeration of all num-
bers from Z in ascending order and b0, b1, … — of all numerals from – Z.

We define σ on standard numerals as follows: each numeralai represents
a certain number from C, each numeral frombi represents a certain number
from – C, and every natural number is represented by at least one nu-
meralai orbi. Such an assignment exists because Z and – Z are both infi-
nite while C and – C are both non-empty. Also, for any natural number i
and any λ ∈ S, let: σ (f 1 …1 (λ)) = fi (σ (λ)) where there are exactly i occur-
rences of symbol1 inf1 … 1.

This representation is well-defined because each natural number is
represented by at least one numeral; namely, a certain numeral of the
standard representation. For any function fi ∈ F and any λ ∈ S, we define:
(fi)σ (λ) =f 1 …1 (λ), where there are exactly i occurrences of symbol1
inf1 …1. It follows that all the functions from F are computable in (S, σ).

We shall show that χC is not computable in (S, σ). Suppose, to the con-
trary, that it is computable. We shall show that this assumption leads to
a contradiction because then the set Z would also have to be computable.

It follows from the assumptions that, for any natural number n: n ∈ Z iff
σ (n) ∈ C, so n ∈ Z iff χC (n) = TRUE. According to our assumption, χC is
computable. Thus, Z is also computable, which leads to a contradiction.
Therefore χC is not computable. ■

SUMMARY

The purpose of this paper was to argue in favour of the following claim:
when choosing a representation of numbers, it is very important that the
characteristic function of identity χ= should be computable in it. Here is
a summary of the arguments supporting this claim:

1. If we assume the computability of χ=, certain weaker notions become
equivalent to certain stronger notions: the computability of f and of χf (Theo-
rem 1) as well as isomorphism and strong isomorphism (Theorem 3). It is

REPRESENTING NUMBERS 73

therefore possible to simplify the conceptual apparatus used to describe and
compare representations.

2. Representations without computable function χ= cannot be strongly
isomorphic to any representations (Theorem 5). Our ability to compare them
with each other is thus limited, as is our ability to compare numerals from
various such representations.

3. The computability of χ= together with the computability of a certain
given function in a representation of can, in some cases, be a sufficient
condition of computability of certain other functions, while if we do not as-
sume the computability of χ=, the computability of those other functions does
not follow from our assumptions (Theorems 10 and 12).

BIBLIOGRAPHY

Church A. (1938), “The Constructive Second Number Class,” Bulletin of the American
Mathematical Society 44, 224-232.

Kleene S. (1938), “On Notation for Ordinal Numbers,” The Journal of Symbolic Logic 3,
150-155.

Rogers H. Jr. (1967), Theory of Recursive Functions and Effective Computability, Cam-
bridge, MA: MIT.

Shapiro S. (1982), “Acceptable Notation,” Notre Dame Journal of Formal Logic 23(1), 14-20.
Zdanowski K. (2012), On Notation Systems for Natural Numbers and Polynomial Time

Computations, Numbers and Truth, Gothenburg (unpublished slides from a conference).

