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Abstract
It has been argued that the use of big data in scientific research obviates the need for causal
knowledge in making sound predictions and interventions. Whilst few accept that this claim is
true, there is an ongoing discussion about what effect, if any, big data has on scientific methodol-
ogy and, in particular, the search for causes. One response has been to show that the automated
analysis of big data by a computer program can be used to find causes in addition to mere corre-
lations. However, up until now it has only been demonstrated how this can be achieved with
respect to difference-making causes. Yet it is widely acknowledged that scientists need evidence
of both “difference-making” and “production” in order to infer a genuine causal link. This paper
fills in the gap by outlining how computer-assisted discovery in big data can find productive
causes. This is achieved by developing an inference rule based on a little-known causal process
theory called the information transmission account.

Keywords: causation, big data, data-intensive science, machine learning, conserved quantities,
causal processes

A debate has recently emerged concerning to what extent — if any — the
use of big data as a form of scientific evidence overturns traditional forms of
scientific theorizing. One particular issue is whether or not the introduction
of big data obviates the need for making causal inferences. Advocates of big
data, such as Chris Anderson (2008), Jim Gray (2007), and Viktor Mayer-
Schönberger and Kenneth Cukier (2013), argue that the sheer size of big data
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is such that “correlation can supersede causation” as the primary goal of sci-
entific investigation. As Anderson puts it, this overturns traditional thinking,
which often values causation over correlation:

Scientists are trained to recognize that correlation is not causation, that no conclusions
should be drawn simply on the basis of correlation between x and y (it could just be
a coincidence). . . .  But faced with massive data, this approach to science — hypothe-
size, model, test — is becoming obsolete. . . .  There is now a better way. Petabytes
allow us to say: “Correlation is enough.” We can stop looking for models. We can ana-
lyze the data without hypotheses about what it might show. We can throw the numbers
into the biggest computing clusters the world has ever seen and let statistical algo-
rithms find patterns where science cannot. (2008: 2-3)

Big data’s unique nature can be characterized by the so-called “three Vs”:
greatness in volume, diversity in variety, and quickness in the velocity in
which it is acquired and analyzed (Laney 2001). This has been made possible
by rapid advances in technology (especially the internet and data storage ca-
pacity) over the past few decades. And it is precisely this technological change
in the way data is gathered and analyzed which some believe is radically af-
fecting the way science is practiced. For example, Gray calls the increased use
of big data a “new paradigm of scientific exploration” (2007: xix). On the is-
sue of causation, Schönberger and Cukier call the traditional understanding
of science as engaged in finding causal mechanisms a “self-congratulatory
illusion” which is “overturned by big data” (2013: 18).

In section 1, I lay out some of the reasons why enthusiasts of big data
claim it heralds a new age of science — one free from theory and causal infer-
ence. But it should be noted that most philosophers of science have tended
not to agree with these extreme claims. Although they agree big data changes
some practices of science, they argue this does not overturn the need, nor the
desire, for causal knowledge. One type of response to the challenge from big
data is to argue that — despite appearances — causal connections can be
searched for in big data using the very same computer programs which are
typically believed to only search for correlations. An example of this response
is given by Wolfgang Pietsch (2016). He outlines a difference-making account
of causation which is compatible with a number of existing big data search
methods.

Difference-making accounts of causation form one half of a well-known
dichotomy between two concepts of causation employed in science. Whereas
difference-making accounts focus on patterns and probabilities, “productive”
concepts focus on the ability of a cause to “bring about” or “produce” its ef-
fect. Productive accounts typically appeal to causal processes or mechanisms
in order to do this. It has been demonstrated that when scientists make
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causal inferences they look for evidence of both difference-making and pro-
ductive causes (Russo, Williamson 2007, 2012, Clarke et al. 2013, 2014).

This raises the question: can computers be designed to do more than just
find difference-making causes in big data? Can they be programmed to find
productive causes as well? This paper will argue that they can. This is achieved
by developing a recent version of the transfer theory of causation called the
“information transmission account.” This account, which has its origins in
John Collier (1999, 2010), but has been more recently advocated by Phyllis
Illari (2011, 2014), claims that causation is the transmission of information
between two objects or events. Given that information is principally a prop-
erty or characteristic of data, this potentially allows one to search for produc-
tive causes by measuring the size of data.

In section 2, I outline the main tenets of the information transmission ac-
count and how it relates to similar accounts of causation such as those of
Wesley Salmon and Philip Dowe. In its current form, the information trans-
mission account relies on a qualitative measure of information; but if it is to
provide a suitable basis for the automated search of big data, then it needs to
be supplemented with a quantitative measure. In section 3, I evaluate the
suitability of three existing quantitative measures and argue that information
understood as algorithmic complexity provides the best with respect to big
data. In section 4, I outline a potential inference rule that could be used to
search for productive causes. There I briefly illustrate how this rule might be
utilised in practice in a well-known data-intensive scientific field: exposomics.

1. BIG DATA AND CAUSAL INFERENCE

David Hume once said “all reasonings concerning matters of fact are
founded on the relation of cause and effect” (1978: 649), and whilst not all
scientific investigation is about finding causal connections in nature, a sig-
nificant portion of it is. Much scientific knowledge, especially in the fields of
biology, medicine, and the social sciences, concerns the identification and
accurate description of causally connected variables. It seems remarkable
therefore to claim, as some have done, that the arrival of big data should
overturn this. To help see why, consider a well-known success story of big
data: Google Flu Trends.

In 2008, Google developed a model to predict influenza spread based on
search queries in areas identified as endemic by the Centers for Disease Pre-
vention and Control (CDC). Once a correlation had been found, Google was



BILLY WHEELER8

able to predict outbreaks of influenza in the US with a reported success rate
of 97% (Ginsberg et al. 2009). What was different about Google’s model is
that it did not depend on any prior theory or causal understanding of which
terms would be searched by individuals with influenza: it only looked for cor-
relations. The speed at which Google was able to make predictions was im-
pressive. Unlike the CDC, which relied upon records from thousands of
healthcare providers, Google could read directly in real time the search terms
entered into its site. This gave it a ten-day advantage over the CDC at pre-
dicting outbreaks (Helft 2008).

For Mayer-Schönberger and Cukier (2013: 1-3), examples like this reveal
the advantages of big data analysis over traditional theorizing. Without the
need for a hypothesis, researchers at Google were able to predict the spread
of influenza much faster than traditional methods. They effectively bypassed
the scientific method as we currently know it: there was no need for causal
understanding — correlation could do “just as good.” Another example that
Anderson cites comes from the inventor of “synthetic biology,” Craig Venter.
By using “shotgun” gene sequencing methods of entire eco-systems, Venter
was able to identify thousands of previously unknown bacteria and other life-
forms. It is the size of the data gathered and its quick analysis by a computer
program that Anderson claims changes everything here. Ventor did not know
much about the life-forms he had discovered (for example, their species or
how they lived), yet despite this — according to Anderson — he has “advanced
biology more than anyone else of his generation” (2008: 3).

Few mainstream philosophers of science believe big data really spells the
end of causal inference in science. Even Mayer-Schönberger and Cukier state
that the true value of big data is that it might quickly and more efficiently

point the way for causal investigations. By telling us which two things are potentially
connected, they allow us to investigate further whether a causal relationship is present,
and if so, why. (2013: 66)

Among philosophers who have written on this topic, two different types of
responses have emerged.

The first, which might be called the “hidden causal thesis,” is that big data
practices already use a broad range of causal knowledge — both in the design
of the study and in subsequent experimental investigation. Examples of this
interpretation can be found in the work of Sabina Leonelli (2014) and Stefano
Canali (2016).

Leonelli focusses on the construction of databases for model organisms in
experimental biology such as FlyBase and WormBase. She argues that the
construction of these databases requires a significant amount of data cura-
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tion, given the complexities surrounding the ways in which the data was
originally gathered. She claims that the data in these collections undergoes
three distinct phases: de-contextualization, re-contextualization, and re-use,
and in each case evidence can be found of significant amounts of prior theory
being employed as well as knowledge of existing causal connections (2014: 8).

Canali finds similar results in current exposomics research. More specifi-
cally, he outlines a “meet-in-the-middle approach” in the use of big data by
Chadeau-Hyam et al. (2011) in their study of breast and colon cancer.
According to Canali, the identification of a correlation between exposure and
disease is only one part of the story: the next step in their investigation was
the discovery of mechanisms or processes in the middle that connect the two.
These mechanisms involve connections between internal responses, or “bio-
markers” (see section 4 for more on exposomics and biomarkers). From this,
he infers that there was an obvious need for causal knowledge in subsequent
investigation of the data (2016: 4-5).

The work of Leonelli and Canali therefore shows that when big data is
used by scientists there is often hidden causal knowledge at work, either in
the curation of the data or in subsequent investigations. However, this is not
the only way the claims made about causal inference by Anderson and others
have been questioned.

This brings me to the second response, which might be called the “auto-
mated causal thesis.” This interpretation is more resonant with the ambitions
of big data enthusiasts in that it recognizes that the use of big data, especially
its automated search by a computer, brings about genuine changes in scien-
tific methodology. However, it disagrees that causal inferences can no longer
be made. Representative of this approach is Pietsch (2016). He argues that
search algorithms can be used to do more than just search for correlations. In
fact, on certain conceptions of causation and causal inference, it is possible to
find causes within big data.

Pietsch achieves this by focusing on a rule for causal inference based
around eliminative induction and Mill’s “method of difference”:

The best known and arguably most effective method of eliminative induction is the so-
called method of difference that establishes causal relevance of a condition CX by com-
paring two instances which differ only in CX and agree in all other circumstances C. If
in one instance, both CX and A are present and in the other both CX and A are absent,
then CX is causally relevant to A. (2016: 148)

By focusing on regularity and correlation, Pietsch’s conception of causation
and causal inference is easily compatible with automated search programs. In
fact, he argues, even existing search programs, such as those used in machine
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translation and microtargetting, already analyze data in ways that allow one
to identify causes via eliminative induction (2016: 152-156).

Pietsch’s conception of causation, as given by Mill’s method of difference,
is an example of “difference-making.” It should be contrasted with another
important conception of causation: “production” (Hall 2004, Godfrey-Smith
2010). Difference-making causes typically refer to whether or not the pres-
ence of one event is statistically relevant to the occurrence of another. Ex-
amples of difference-making accounts of causation are those that focus on
regularities, probabilities or counterfactuals. However, there is another im-
portant conception of causation which focusses not on relevance but respon-
sibility. Productive accounts attempt to describe what it is about one event or
state of affairs that is “responsible for” or “brings about” another event. Pro-
ductive theories of causation focus on mechanisms, processes, and other
ways in which two objects or events can be connected together.

Recent studies show that when scientists make causal inferences, they
look for evidence of both difference-making and production. Frederica Russo
and John Williamson have studied the concepts at play when causal infer-
ences are made in healthcare (2007), autopsy reports (2011), and the Enviro-
Genomarkers project (2012). They argue that although evidence of probabi-
listic connections is vital, this is rarely enough to warrant a causal connection.
Causal relevancy is good for making predictions in a known sample or popu-
lation, but it does not allow us to extrapolate to unknown groups. Russo and
Williamson identify knowledge of production (in the form of mechanisms) as
an additional component necessary for establishing general causal claims:

The existence of a mechanism provides evidence of the stability of a causal relation-
ship. If we can single out a plausible mechanism, then that mechanism is likely to oc-
cur in a range of individuals, making the causal relation stable over a variety of popu-
lations. If no mechanism were found, that may be because the correlation is particular
to a specific sample population or a specific set of circumstances — i.e., it is a “fragile”
relationship — and not sufficiently repeatable. In other words, mechanisms allow us to
generalize a causal relation: while an appropriate dependence in the sample data can
warrant a causal claim “C causes E in the sample population,” a plausible mechanism
or theoretical connection is required to warrant the more general claim “C causes E.”
(2012: 159)

Pietsch’s interpretation of big data analysis and its search for causes therefore
gives us only half the story. A full search for causes within big data by a com-
puter program should look for both difference-making and production. But
can a program be designed to search for productive causes? And if so, what
concept of production is suitable for use in the automated search of big data
by a computer? I now turn to examine a recently proposed productive ac-
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count of causation called the “information transmission account.” I argue
that this has many of the right features to function as a suitable concept for
big data analysis. However, in its current form, it requires some amendments
in order to be fully utilized in practice.

2. THE INFORMATION TRANSMISSION ACCOUNT

The information transmission account is an attempt to provide a concept
of causation that underscores our productive intuitions about causality. To
highlight the difference between productive and difference-making concepts,
consider the following example. Billy and Suzy are both throwing stones at a
bottle in an attempt to break it. Billy throws his stone at t1 followed shortly by
Suzy’s at t2. Billy’s stone strikes the bottle and breaks it. However, it is also
true that had Billy’s stone missed, Suzy’s would also have hit, and the bottle
would have broken anyway. In this example, whether or not the bottle breaks
depends on both Billy’s and Suzy’s throws. They are both causally relevant
factors for whether or not the bottle breaks. But there is also an important
sense in which it was Billy’s stone alone that was responsible for the breaking
of the bottle. It is this “responsibility” aspect of causation that productive
accounts attempt to explain.

The information transmission account is a version of a transfer theory,
and attempts to improve on previous transfer theories such as those of Ron
Aronson (1971), David Fair (1979), and Philip Dowe (2000). These previous
theories explain responsibility as the transfer of a physical quantity such as
force, momentum, or energy. In the case above, the reason why Billy’s stone
was responsible for the bottle breaking is that it transferred some of its physi-
cal properties — such as energy — to the bottle. This transferred energy
caused structural failure resulting in the bottle breaking. No such transfer
occurred between Suzy’s stone and the bottle, and so her throw was not re-
sponsible for the bottle breaking.

Phyllis Illari criticizes these previous transfer theories on the basis of their
general applicability:

The only properties the conserved quantity theory could possibly pick out as relevant
are conserved quantities. These are relatively few, such as charge, mass, momentum
and so on. But in the vast majority of cases of causality in the special sciences, these are
not the relevant properties at all. . . .  Charge, mass and momentum seem incidental
to such causal claims as “smoking causes cancer,” since the various sciences of cancer
do not concern themselves with charge, mass or momentum. (2011: 98)
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Many causal claims do not involve reference to fundamental quantities from
physics. If we are to have a theory of causation that is applicable in a range of
sciences then we need a concept which is more universally applicable.

Illari identifies this concept as “information.” She agrees with John Collier,
who writes that “the basic idea is that causation is the transfer of a particular
token of a quantity of information from one state of a system to another”
(1999: 215). In this regard, the Illari–Collier view is similar to another trans-
fer theory: Salmon’s (1984) mark transmission theory. However, whereas
Salmon defined a causal process as one which has the ability to transmit
a mark or message, Collier and Illari argue that causal processes are those
that actually transmit information — and transmit the same information.

As Collier puts it: “the connection in this case is identity, which is perhaps
the strongest connection one can have, and requires information transmis-
sion across time: it is the identical token of information” (2010: 11-12). So
according to the information transmission account two objects, states of af-
fairs, or processes are causally connected provided there is the exchange or
transmission of information between them. The concept of information is
suitably general to cover the range of causal claims made across the sciences.
It also seems a particularly appropriate concept for finding causes in big data
given that data-intensive sciences trade in large amounts of information and
its processing.

Despite this, the information transmission account is too abstract to be of
practical use by scientists in its current form. Although it might provide
a useful account of the metaphysics of causation, it is too vague to help in
its epistemology. For how should we look for information transfer? How
would we know information had been successfully transferred between two
objects or states of affairs? When we think of information, we tend to think of
meaningful information so that the “same information” carries the “same
meaning.” Yet if two objects or events are causally connected by transferring
the same information in this way, it might require us to think of objects as
communicating with one another — or it at least requires a semantic inter-
pretation of physical states as carriers of data.1

The problem here is similar to that with the previous theories of Aronson
and Fair. Like Collier and Illari, they too demanded that the transferred
quantity retain its identity during the exchange. Literally, when the stone hits
the bottle it exchanges the very same energy that was present in the stone.
But as Dowe has previously argued (2000: 55-59), it is not obvious that

                                                   

1 Collier states that a causal process is not just one that transmits the same “form” but
one that transmits the same “fact” between two states of affairs (1999: 9).
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physical magnitudes retain their identity in this way when exchanged. Con-
sider a case where Billy and Suzy are pushing a car uphill together. It is not
clear that we can say, metaphysically, which part of the momentum of the car
is provided by Suzy and which part by Billy. The most it seems we can say is
that each contributes a particular amount to its momentum. We can measure
this amount and give it a number, but we cannot divide it into tokens and
track their metaphysical identity through time.

For Dowe, this suggests that what matters in causal interaction is not
identity of transferred quantities but their equality vis-à-vis their numerical
magnitude. We might then wonder whether the same could be said about the
information transmission account. Instead of requiring, as Collier and Illari
do, that the information is the same in terms of meaning, we might demand
only that the information is the same in terms of quantity.2 Two objects or
events are causally connected provided the amount of information is con-
served before and after the exchange. Information is widely thought to be
constant within a closed system, so information would qualify as a conserved
quantity in Dowe’s sense.3

Following Dowe’s original treatment of causal process and causal interac-
tion, this modified version of the information transmission account yields the
following definitions:

CAUSAL PROCESS: A causal process is a world line of an object
that conserves information.

CAUSAL INTERACTION: A causal interaction is an intersection of
causal processes whose sum total of information is conserved.

The case of single causal processes is included in order to explain how objects
that are not interacting are nonetheless responsible for their future states.
For example, a single wrench spinning in the vacuum of space is responsible
for its future states even though it is not exchanging information or physical
magnitudes with any other objects.

Can we now define an inference rule for finding productive causes in big
data? Even though it is possible to formulate the information transmission
account using a purely quantitative notion of information transfer, we are not
yet in a position to do this. The reason is we have not yet said how the infor-

                                                   

2 Collier (1999, 2010) also develops versions of the information transmission account
that are quantitative and based on the ideas of entropy and complexity. I discuss these
interpretations in more detail in section 3.

3 Black holes might provide an exception here. See Preskill (1992) and Hawking (2015)
for more context on this debate.



BILLY WHEELER14

mation is to be measured. The literature on information measurement con-
tains many different accounts and not all of these are going to be practical for
use in searching big data. Therefore, I now turn to evaluate three of the more
well-known measures: “knowledge update,” “entropy,” and “algorithmic
complexity.” I argue that the last of these provides the best measure of infor-
mation for finding causes in big data.

3. THREE CONCEPTS OF INFORMATION

3.1. INFORMATION AS KNOWLEDGE UPDATE

The first concept comes from the field of epistemic logic. This branch of
logic concerns itself with modelling knowledge states and how they change
when new information is received. The basic idea is that when an agent re-
ceives some new piece of information, their epistemic state changes. The
epistemic state of an agent is modelled using Kripke semantics: each possible
world available to the agent is a possible way the world could be.

To illustrate, suppose an agent does not know which day of the week it is.
Then there are seven possibilities. She is told “it is a weekend day”. This re-
duces the number to two. Furthermore, she is told “it is not Saturday”. She
updates her state, and there is only one possibility remaining: it must be
Sunday. Every time the agent receives a new piece of information, her state
changes and we can measure “how informative” a message is in terms of
changes in her state.

What would the information transfer account look like when supple-
mented with the notion of information as knowledge update? Let us imagine
that the world line of an object provides a knowledge update to an agent,
which we may take to be some kind of measurement or observation on a par-
ticular occasion. Then we can define a causal process and causal interaction
in the following way:

CAUSAL PROCESS: A world line is a causal process if the epistemic
update received by an agent at time t1 excludes the same possi-
bilities as an epistemic update received by an agent at time t2,
where t1 and t2 are different points along the world line.

CAUSAL INTERACTION: There is a causal interaction between two
causal processes A and B if the sum total epistemic updates re-
ceived by an agent observing A and B at time t1 excludes the
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same possibilities as the total epistemic updates received by an
agent observing A and B at time t2, where t1 is a point prior to
intersection, and t2 is a point after intersection.

In the case of a single causal process, how much information an agent re-
ceives by observing an object remains the same, no matter when they observe
it. This would be opposed to a pseudo-process, which can become more or
less informative at different times. This seems highly plausible in the case of
knowledge updates. If we go back to the example of the wrench, it appears
that whatever the current state of the agent, they will receive the same knowl-
edge when observing the wrench — no matter when they observe it.

It is clear that the agent in the definitions above needs to be defined relative
to a specific epistemic context. This is because what an agent already knows
affects the value of a given piece of information. How detrimental is the inclu-
sion of an ideal agent into this proposal? In terms of finding a rule for causal
inference the inclusion of an ideal agent is not that troubling. This is a common
device in many approaches to scientific reasoning. Scientists do not reason “in
a vacuum” and, provided we are explicit about what knowledge they have dur-
ing the reasoning process, we can lay down rules for good and bad inferential
practices. The inclusion of an ideal agent is more problematic in terms of giving
a metaphysical analysis of causation “as it is in the world.” Yet since our aim
here is with the epistemology of causation, rather than with defending a par-
ticular metaphysical view, I think we can put this worry to one side.

In the case of causal interaction, two objects or events are causally con-
nected provided an ideal agent receives the same total epistemic updates af-
ter interaction as they would prior to interaction. Unfortunately, a simple
thought experiment demonstrates how this is not possible in practice.

Imagine two particles α and β passing through space with different values
for momentum, energy, and charge. At a point along their world lines they
collide and transfer some of their physical quantities to each other. Even
though their sum physical magnitudes remain constant, it is clear that
knowledge updates do not. Let t1 be a time along their world lines prior to
collision and t2 a time along their world lines after collision. An agent ob-
serving the particles at t1 knows something about the particles at that time —
namely “their energy, momentum, and charge at t1.” Like all updates, this
excludes a number of possibilities about the world and gives her a particular
amount of information. But an ideal agent who observes the particles at t2

cannot exclude these same possibilities — as she has no access to the properties
of α and β before t2. Given her current observations, there are more possibili-
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ties available for the energy, momentum, and charge at t1 — since a number
of different configurations are compatible with her current observation.

This demonstrates that it is possible to learn something at t1 which cannot
be learned at t2 and so for that reason information as “knowledge-update” is not
always conserved during interaction. Information as “knowledge update,” there-
fore, seems unsuitable as a basis for the information transmission account.

3.2. INFORMATION AS ENTROPY

The next concept of information has been influential in electrical tele-
communication, where it has provided rigorous mathematical definitions of
optimal coding, noise, and channel capacity. The basic idea is that the less
likely a message is (out of all possible messages), the more informative it is
and vice versa. For any given message or symbol produced by a source, there
is an assumed probability distribution. The “entropy” (H) contained within
a message x is given by its probability p(x) according to the following equa-
tion (Shannon, Weaver 1949):

ENTROPY: H(x) = –Σp(x) log2 p(x)

How useful is this idea for thinking about productive causes and causal infer-
ence? The first thing to say is that, in its original use, the concept of informa-
tion as entropy provided a nice model of causation understood as the flow or
transfer of information. The original application was for copper wires trans-
mitting messages via electrical wave or impulse (Pierce 1961). If we think of
causal processes as taking place along a channel, then we can readily appreci-
ate the relationship. Secondly, by taking the negative log of the probability,
we get the quantity of information that is additive: H(x) + H(y) = H(x + y).
This means it can avoid the worries we had with the knowledge update view
as the sum totals will be conserved during interaction.

At the moment I have not said how we measure the entropy of a process
or channel. This could amount to one of two things. It could be the “entropy
rate,” which is the average information carried by a message per second, or
it could be the “self-information,” which is the amount of information re-
ceived by an individual at the end of the channel or process.

It is not obvious how the first of these relates to causation. The entropy
rate is an average, so by definition this will remain constant in all processes.
This makes it difficult to separate genuinely causal processes from pseudo-
processes on the basis of conservation. Likewise, thinking of the entropy as
the property of a channel with respect to a particular message is problematic
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if a channel produces messages with different likelihoods and therefore dif-
ferent entropies.

Fortunately, the nature of causal processes suggests we can model them
as channels transmitting single messages through space-time. Providing the
causal process is not interacting, it will transmit just one message, with a sin-
gle amount of self-information:

CAUSAL PROCESS: A causal process is a channel which transmits a
message with constant entropy value.

This has prima-facie plausibility with respect to the solitary wrench in space.
The entropy it carries remains constant and would inform the receiver
equally regardless of when they intersected it.

On this basis, we can develop an account of causal interaction as well:

CAUSAL INTERACTION: A causal interaction occurs between two
channels A and B if the sum total of entropies before interaction
equals the sum total of entropies after interaction.

This definition says that the chance of a message occurring remains con-
stant through interaction and therefore the total information vis-à-vis en-
tropy remains constant.

Although it characterizes causation differently, this version of the infor-
mation transmission account inherits familiar problems raised against differ-
ence-making accounts — the most obvious being how to explain where the
values in the probability distribution come from. How we do this depends on
which interpretation of probability we take. I am keen to avoid a protracted
discussion of the pros and cons of various interpretations of probability (see
Gillies 2000 for an overview of the existing literature). However, I think it is
worth looking at three of the most relevant interpretations in order to high-
light the difficulties any advocate of entropy faces when attempting to for-
mulate an inference rule on the basis of conserved information.

(i) The relative frequency interpretation gives an objective value for the
probability of x occurring based on the number of actual occurrences of x out
of all possible occurrences of x. This interpretation proves particularly prob-
lematic for causal inference. Firstly, there is an issue regarding how to ascer-
tain the values. Sampling is our best option here, which is already consistent
with scientific practice, but our sampling method may fall short through
sampling bias or statistical irregularity. The case of big data does provide
some reprieve: if our sample contains N = all, then these biases and coinci-
dences can be minimized. But there is a second problem. The probability for
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any outcome based on past occurrences is constantly changing. This means
that its entropy value will also be constantly changing. Even a causal process
which transmits a single message cannot be expected to have constant en-
tropy, since presumably instances of the event-type are happening elsewhere
in the universe, thus changing its distribution. Interpreting probability as
relative frequency, therefore, has the undesirable consequence that entropy
cannot be a conserved quantity.

(ii) The aforementioned problem might be overcome if we adopt a physical
propensity interpretation (Popper 1959). This view claims that probability is
given by the propensity of a mechanism or system to produce a certain out-
come. For example, flipping a fair coin has a propensity (as a real tendency or
dispositional property of the system) to produce heads 1/2 of the time. The
trouble with the propensity interpretation, as has been discussed before
(Gillies 2000: 825), is that values are underdetermined by the evidence. If an
event occurs once, its relative frequency is 1, but its physical propensity may
be different. Naturally, therefore, this raises questions about our ability to
ever know the propensities of physical processes. There are also metaphysical
worries: philosophers who adopt causal process theories usually do so on
empirical or Humean grounds. But, to borrow an expression from John
Earman (1984), propensities fail the “empiricist loyalty test” since two worlds
could agree on all occurrent/observable facts but differ over the chances for
physical systems.

(iii) The last option to consider equates probability with subjective degrees of
belief (Ramsey 1990). This interpretation has the virtue of having been exten-
sively discussed already through Bayesian confirmation theory (Howson,
Urbach 1993). However, this interpretation is also problematic for thinking
about causation as conservation of entropy. Like the epistemic update view,
this notion would depend on an ideal agent and their background beliefs. It is
quite possible that here subjective degrees of belief are not conserved in
causal interaction at all — especially when the outcome of that interaction is
“surprising” to the agent. Alexander Flemming’s combined degrees of belief
of there being penicillin mould and bacteria in his petri dish may be far
higher than his belief that the petri dish would contain penicillin mould and
dead bacteria. It is hard to see how conservation could be guaranteed in such
cases even though causal interaction was clearly involved.

This section has shown that the main difficulty for measuring information
in terms of entropy is its dependence on probability. Whilst this provides a
quantitative theory, it requires some explanation of the origin of the prob-
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ability distribution. Well-known accounts all seem to be problematic in this
respect; the difficulties discussed above will have to be dealt with before
measuring information in terms of entropy becomes a viable option.

3.3. INFORMATION AS ALGORITHMIC COMPLEXITY

The final measure of information originates from algorithmic information
theory (AIT), which was developed independently by Ray Solomonoff (1964)
and Andrei Kolmogorov (1965). The basic idea is that informativeness is con-
nected to complexity: the more complex an object, the more information is
required to describe it. The size of the information is measured formally as
the length of a program running on a universal computing device that can
produce a description of the object. Compare, for example, the following two
strings:

(a) 01101001100101101001011001101001…

(b) 01011010111001010101111101001000…

At first glance (a) and (b) appear random, but on closer inspection (b) is re-
vealed to contain greater structure than (a). The arrangement in (b) is known
as the Thue-Morse sequence and can be produced by a simple set of rules.4

This makes string (b) computationally less complex than (a). In order for a
computer to output (a), it would need to repeat the entire message, whereas
for (b) it need only execute a simple algorithm. AIT defines the amount of
information in a string S as the length of the shortest program which, when
executed, outputs S. This quantity, “K(S),” is known as the algorithmic com-
plexity of S.

Algorithmic complexity looks like a suitable concept for information
transfer. It is easily measurable (the size can be given simply by counting the
number of bits) and it is additive: K(S1) + K(S2) = K(S1 + S2).5

A version of the information transfer theory that adopts algorithmic com-
plexity could look something like the following:

CAUSAL PROCESS: A causal process is the world line of an object
that conserves algorithmic complexity.

                                                   

4 This sequence is produced by starting with 0 and then repeating every consecutive
symbol according to two rules: (i) If “0” print “01” and (ii) If “1” print “10.”

5 For finite strings the additivity rule may not be met because short strings with structure
may not be compressible if the size of their algorithm is large. The difference dissipates as
their size increases. So, assuming S1 and S2 are relatively large strings, we can assume that
additivity is met. Given most data sets are large, this seems like a safe assumption.
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CAUSAL INTERACTION: There is a causal interaction between
processes A and B if the sum total of algorithmic complexity of A
and B before interaction equals the sum total of algorithmic
complexity of A and B after interaction.

In the case of the wrench in space, the first definition looks plausible. Provided
it does not interact with anything else, then regardless of which time we de-
scribe it, the total amount of resources required should remain the same. In this
case we can say that the single process conserved information over time.

It also looks plausible in cases of causal interaction. Consider a very sim-
ple example. Suppose a scientist wishes to investigate whether or not chang-
ing the value of a variable A has any effect on another variable B. For sim-
plicity, suppose these two variables only come in two values: 0 and 1. The
scientist then records the values of each variable at different points in time
and produces two data sets:

At1 0 0 0 0 0 0 0 0 0

Bt1 0 0 0 0 0 0 0 0 0

At2 1 1 1 1 1 1 1 1 1

Bt2 1 1 1 1 1 1 1 1 1

Table 1. Data for variables A and B at two time points

In terms of “meaning” there is clearly no information conservation be-
tween the two data sets. The values for A and B at t1 are not the same as those
at t2. There is therefore no semantic conservation. But there is conservation
of structure, and because of this, both set-1 and set-2 could require the same
amount of computational resources to describe. In the case of set-1, we need
only note the value of one instance of A (0), the number of instances of A (n = 9),
and the rule “v(A) = v(B)” (where “v(x)” stands for the value of x). These three
instructions provide a complete description of the data in set-1. But these
instructions equally produce all the data we need for set-2. As the descrip-
tions of set-1 and set-2 are the same (and therefore the same size), so there is
equality of complexity. If this set of instructions is the shortest possible, then
we can say there is conservation of algorithmic complexity (K) and that there
is information conservation between the states of A and B at time t1 and their
states at t2.

Intuitively in this case we would be willing to infer that there is a causal
connection between A and B, and that changing the value of A “brought

Set-2

Set-1
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about” or was “responsible” for a change in B. Our intuitions about produc-
tive causes in this simple example, therefore, seem to match up with infor-
mation conservation understood as algorithmic complexity.

One potential worry is that K is language-dependent. As we are measuring
K in terms of the number of symbols, its length depends on our choice of en-
coding. Imagine that I use language L1 to describe the properties of the
wrench before some particular time t. However, after t, I describe it using a
different language L2. Since K is language-dependent this means its com-
plexity will not be conserved and that the amount of information carried by
the causal process is not conserved.

There is a solution to this problem we could appeal to. We can exploit a
formal result in AIT known as the “invariance theorem”:

INVARIANCE THEOREM: (∀S)  KL1(S) – KL2 (S) ≤ c

This states that for all strings S the difference in their complexities equals a
constant c, whose value depends only on the computational resources re-
quired to translate one coding language to another (Li, Vitanyi 1993). If the
strings are themselves long relative to a translation program, then the differ-
ence becomes minimal. In the limit, as the size of S tends towards infinity,
the choice of encoding becomes irrelevant.

If comparisons are made using different languages, then we need to be
aware that a margin of error will be present and that all inferences are subject
to an error given by the value for c. However, given that working within mar-
gins of error is standard practice within statistical analysis, the use of com-
plexity as a measure of information does not bring with it any new problems.
A better way to avoid this would be to set the requirement that all descrip-
tions are carried out using a specific language. Provided scientists continue to
use the same coding language, causal processes will conserve complexity.
Given that most data-intensive research requires a period of data curation —
where the data is made readable for analysis by a computer — we can be con-
fident that most comparisons will be made relative to a fixed language.

In conclusion, I propose that algorithmic complexity — as given by the
value for K — provides the best measure of information with respect to big
data analysis. This does not mean that any other measure could not work in
practice, only that information as algorithmic complexity seems to pose the
least problems when finding causation via the transmission of information.
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4. INFERRING CAUSES USING K:
AN ILLUSTRATION FROM EXPOSOMICS

It is now time to make good on the work from section 3 and show how pro-
ductive causes can be found by searching for algorithmic complexity conserva-
tion. I will do this by outlining a potential inference rule and illustrate how it
might help in the scientific field of exposomics. Exposomics is a relatively re-
cent field. It makes use of big data and new data gathering technologies and has
explicitly recommended the use of computer-assisted discovery in the search
for causal links (Manrai et al. 2017). It is an ideal field, therefore, to illustrate
the potential benefit of a new inference rule for finding productive causes.

Exposomics is the study of the “exposome” and its effect on our health.
According to Christopher Wild — who coined the phrase “exposomics” — “at
its most complete, the exposome encompasses all life-course environmental
exposures (including lifestyle factors), from the prenatal period onwards”
(2005: 1847). It is known that many diseases are causally affected by a com-
bination of genetic and environmental factors. Exposomics aims to provide
a counterpart to genomics by producing detailed models of risk factors for
environmental conditions (such as pollution, radiation, water contamination,
etc.) and their connection to certain diseases. One of the innovative elements
of exposomics is its use of “omics technologies” that take recordings of bio-
markers (internal biological processes) that may be symptomatic of environ-
mental exposure or the onset of a disease. In this way, it aims to provide a more
complete description of the pathway that leads from exposure to disease:

Environment → Biomarkers → Disease

Data is collected at each stage in this process, and exposomics research
groups are using innovative data collection methods in the hope of providing
a more fine-grained picture of how environment affects health. For example,
the EU-funded project “EXPOsOMICS” hosted at Imperial College London
hopes to investigate the effect of pollution on individuals by utilizing smart-
phone technologies (such as GPS tracking and accelerometers) and have de-
signed portable air quality monitoring equipment that can be carried by indi-
viduals (Vineis et al. 2017: 146). This provides much larger amounts of data
at higher resolution than traditional standalone monitory stations.

As already seen, the inclusion of biomarkers has led Canali (2016) to be-
lieve that the use of big data in exposomics points to a conscious effort to do
more than just find correlation but to search for causal connections as well.
In a recent article by Illari and Russo (2016), they go one step further and
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claim that the relationship between the environment, biomarkers, and dis-
ease is best conceptualized as the “flow of information”:

We want to understand the whole system, all the bits, how they interact, quantitatively,
build reliable models of the dynamic evolution of whole systems under many different
exposure conditions, and the concept giving the dynamic evolution is information. The
flow is in the link, and the link, we suggest, is given by information. (2016: 187)

By using biomarkers, they argue exposomics faces an “evidential puzzle.” The
inside of a human body is a busy place, with many different processes inter-
acting at any given time. The challenge posed by using data gathered from
biomarkers is in deciphering whether or not they are part of a causal pathway
that links an environmental factor to a disease.

Because Illari and Russo work with a qualitative measure of information,
they believe the only way to find evidence of causal processes is through the
“interpretation” and “reconstruction” of the data by a human scientist (2016:
186). But, by using a quantitative measure of information as outlined in sec-
tion 3, I believe it is possible to do more than just this. By using a quantitative
measure, it is possible to automatically search for evidence of stages along the
causal processes.

To see how this might work, think about what it means for a causal pro-
cess to conserve information between two or more variables. Let X, Y, and Z
be variables that exist along a causal pathway. If the information provided by
X is conserved along this pathway, then knowing the information from X
allows us to know the information provided by Y and Z. But as I have already
made clear, the information is not the same. What is conserved is not the
content of the information but the size, and that size is measured in terms of
complexity. So to say X, Y, and Z conserve information is to say that the size of
the shortest description of X is the same as the size of the shortest description
of Y and Z. On this basis, we can develop an inference rule for deciding
whether or not a given variable is part of a causal process:

CAUSAL PROCESS: For variables X and Y, if K(X) = K(Y), then X
and Y form part of a causal process.

In the case of exposomics, the inference rule would work as follows. Given
exposure (E) and disease (D), the question is whether or not one or more bio-
markers (B1-Bn) forms part of a causal pathway linking E to D. A causal search
program can check for this by measuring the sizes of the algorithmic complexity
of E and D and then comparing them to the algorithmic complexity of a given
biomarker B. If K(B) = K(E) (or alternatively, K(B) = K(D)), then we have evi-
dence of complexity preservation and therefore evidence that B is part of
a causal pathway linking environmental exposure to disease. In the proposed
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study by Vineis et al. (2017), the inference rule could help by isolating biomark-
ers which are related to increased exposure to pollution. Mobile monitoring
methods, such as those in the study of Klompmaker et al. (2015), can provide
data about individual exposure patterns to a variety of pollutants of different
size (e.g., PM10, PM2.5, and NO2) as well as ultrafine particles and soot. By
comparing these data with biomarkers from the same individuals, it is possible
to identify pathways of contamination for various types of pollutants. Longer
term studies or studies with available biomarkers and disease can search for
complexity conservation allowing for the establishment of a route between pol-
lutant, biomarker, and the onset of diseases such as heart disease or lung cancer.

The conservation of algorithmic complexity, therefore, provides a simple
test to check whether a variable forms part of a causal pathway along two
previously established members. But it does not tell us about the direction of
the interaction. For example, suppose we have two biomarkers B1 and B2

which are equal in their complexity to E and D. This provides evidence that
both B1 and B2 are part of the body’s internal response to the exposure and
the onset of a disease, but it does not tell us whether or not one is causally
responsible for the other. Yet this information could be very useful to medical
practitioners. It could help predict the progression of a disease within an in-
dividual as well as assist in therapeutic remedies. It is likely, therefore, that
we need to know more than just whether a variable is part of the causal process:
we also need to know what role it plays within that process.

The direction of causal interaction can be measured using the idea of
“conditional algorithmic complexity” (Budhathoki, Vreeken 2018). Put sim-
ply, the conditional algorithmic complexity between two variables K(YX) is
the size of the shortest program that describes Y given X as input. If there is
information flow between two variables X and Y in the direction of X → Y, we
would expect that Y would be more easily compressed given a description of
X than vice versa. This can be described more formally as follows:

CAUSAL INTERACTION: For variables X and Y, if K(X) + K(YX) <
K(Y) + K(XY), then X is a cause of Y.

In this instance, we are comparing compressions of the whole set of data in
the causal process given different variables as starting points. Note that this
does not contradict the previous claim that there is conservation between
variables in a causal process. Here, we are not just comparing K(X) with K(Y),
we are comparing their relative complexities when given information about
each other. If, as a matter of fact, the best description of the data provided by
measuring Y is one which includes a description of X, then this will already
factor into the value for K(Y).
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Discovering whether one biomarker is a cause of another requires a com-
parison of their respective conditional complexities. If the data provided by B2

can be compressed more easily given B1 than the other way around, then there
is evidence that B1 is a cause of B2. This provides the justification for positing
a link and allows one to make predictions and interventions on B1 such as
medical therapies. By detecting the presence of B1 in an individual who lives in
an area with known high concentration of a given pollutant, it is possible to
predict that further biomarkers will be present and help the prevention of the
development of a disease. One can also infer causal direction if data is being
gathered by a diachronic study that records the values of X and Y at intervals
over time. If changes in X occur before Y but both form part of a causal process,
then it is natural to infer that X was responsible for the change in Y. This is not
always available of course, and some interactions might be instantaneous or
near instantaneous. In the ideal scenario, data gathered over time would be
used in conjunction with the comparison of conditional complexities.

These two inference rules show how, in principle, it is possible to find
productive causes in big data using the notion of complexity preservation.
But this leaves one question remaining: can these inference rules be imple-
mented by a computer program in order to automate the search for produc-
tive causes? One challenge concerns the nature of K itself. It is widely known
that K is non-computable: given finite resources, it is not possible to know
whether or not K has been calculated (Li, Vitanyi 1993). However, this has
not stopped scientists in a number of fields from using the concept of a “best
compression” and comparing the lengths of compressions of various sets of
data. In practice, scientists turn to a related method called the “minimum
description length” (MDL) principle. The MDL for an object, such as a string
of symbols, is similar to its algorithmic complexity: it is a measure of its
length when best compressed. But whereas K talks about the “best possible
compression,” MDL refers only to the “best compression available” given a
limited set of coding languages and methods (Grünwald 2007).

Many examples can be given to show that MDL is routinely measured by a
computer program and used to make automated inferences in scientific re-
search.6 In fact, MDL is behind some of the most important applications of
machine learning (Grünwald, Myung, Pitt 2013). If MDL has a good track
record of use by computers, then it provides assurance that it could be used
in the analysis of big data, with values for best compression given and com-
pared to those of existing data sets. Perhaps the best evidence that algo-

                                                   

6 See, e.g., the applications by Iba, De Garis, and Sato (1994), Allison, Edgoose, and
Dix (1998), and Tan and Dowe (2003).
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rithmic compression can be used to search for causal connections comes from
recent work by Kailash Budhathoki and Jilles Vreeken (2018). They have de-
signed a computer program ORIGO, which compares the conditional com-
plexity of various data sets. In trials using both synthesised and real-world
data, ORIGO is able to correctly identify causal interactions in a significant
number of cases (2018: 296-304).

CONCLUSION

The introduction of big data as a source of scientific knowledge does not
mean that causes are no longer important for scientific understanding, but it
does show that new methods, such as automated search, form important new
tactics in uncovering causal connections. If it is true that scientists need evi-
dence of both difference-making and productive causes in order to infer
genuine causal links, then automated search programs need to do more than
just find difference-making causes in big data. I have shown how it is possible
for such programs to find productive causes as well through the information
transfer account of causation. When information is measured as algorithmic
complexity, programs can be designed to determine whether or not an event
is part of a causal process and whether or not it is responsible for one or an-
other event in that causal process. In practice, the method outlined here
should be conjoined with a difference-making method: together they provide
the strongest evidence of causal connections within big data.
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